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The commutation relations of the first-order and second-order operators associated

with the first integrals in involution of a Hamiltonian separable system are exam-

ined. It is shown that these operators commute if and only if a ‘‘pre-Robertson

condition’’ is satisfied. This condition involves the Ricci tensor of the configuration

manifold and it is implied by the Robertson condition, which is necessary and

sufficient for the separability of the Schrödinger equation. © 2002 American In-

stitute of Physics. @DOI: 10.1063/1.1506181#

I. INTRODUCTION

The connection between the additive separation of the Hamilton–Jacobi equation and the

multiplicative separation of the corresponding Schrödinger equation has been examined in paper

1.1 Two different kinds of separation have been introduced for the Schrödinger equation, called

‘‘free’’ and ‘‘reduced separation,’’ respectively, related to two suitable completeness conditions for

a separated solution and geometrically characterized in terms of ‘‘Killing–Stäckel algebras’’ and

of ‘‘separable Killing algebras.’’ These are linear spaces of Killing tensors and Killing vectors

which generate complete systems of first integrals in involution, and which characterize the sepa-

ration of the Hamilton–Jacobi equation in orthogonal and in standard coordinates, respectively.

The corresponding Schrödinger equation is then separable in the same coordinate system if and

only if a ‘‘Robertson condition’’ is satisfied. This condition involves the Ricci tensor of the

configuration manifold and it is fulfilled in the most common applications of the theory ~for

instance, on Einstein manifolds!.

In the present paper we revisit the matter relating the separation of the Schrödinger equation

to the existence of ‘‘symmetry operators,’’ 2 i.e., to the existence of linear second-order operators

on wave functions which commute with the Schrödinger operator. These operators are in one-to-

one correspondence with the quadratic first integrals associated with the separation. We shall show

that the ‘‘quantization problem,’’ i.e., the problem of defining a correspondence between classical

observables and linear operators preserving the commutation relations,3 is solvable for the invo-

lutive algebra of first integrals associated with the separation of the Hamilton–Jacobi equation

provided a ‘‘pre-Robertson’’ condition is satisfied. This condition is implied by the Robertson

condition, so that the quantization problem for a classical natural Hamiltonian system is solvable

if the corresponding Schrödinger equation is separable. The main theorems and remarks are stated

in Secs. III and VI in the case of the orthogonal and general separation, respectively. The proofs

are given in Secs. V and VIII, after general considerations about Killing tensors in orthogonal and

standard form illustrated in Secs. IV and VII.
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II. GENERAL COMMUTATION RELATIONS FOR SECOND-ORDER DIFFERENTIAL
LINEAR OPERATORS

By the ‘‘quantization problem’’ 3 we mean the problem of defining a correspondence F°F̂

between classical and quantum observables, i.e., between smooth real functions on the cotangent

bundle T*Q ~the ‘‘phase space’’! of the configuration manifold of a mechanical system and

self-adjoint linear operators on a suitable ‘‘state-space’’ of complex-valued functions ~or distribu-

tions! on Q. This correspondence is required to be R-linear and preserving the Lie-algebra struc-

ture of classical and quantum observables:

~F1G !ˆ5F̂1Ĝ , ~cF !ˆ5cF̂ ~cPR!, $F ,G%ˆ5g@ F̂ ,Ĝ# .

Here, $F,G% denotes the canonical Poisson bracket of functions, g is a universal constant, and

@ F̂ ,Ĝ#5F̂Ĝ2ĜF̂

is the commutator of linear operators.

The quantization problem is not solvable on the whole set of observables of a phase space.4–6

~see Ref. 3 for details, comments, and references!. In accordance with Schwinger ~Ref. 7, Sec. 2.4!
we can say not only that ‘‘it is a convenient fiction to assert that every Hermitian operator

symbolizes a physical quantity @...#’’ but also that it is a ‘‘convenient fiction’’ to assert that with

every classical observable we can associate an Hermitian operator ~i.e., a quantum observable!.
However, as we shall see, the quantization problem is solvable for the classical observables

involved in the separation of variables of a natural Hamiltonian system, which are polynomials of

second degree in the momenta (p i).

We consider as a starting point the following assumptions: ~i! The universal constant g is a

positive-imaginary number: g5i/h , \PR1 . ~ii! The operator f̂ corresponding to a function f on

Q, interpreted as a function on T*Q constant on the fibers, is defined by

f̂ c5 f •c .

As usual, the operator f̂ will be simply denoted by f. ~iii! The operator P̂X corresponding to a

first-degree homogeneous polynomial

PX5X ip i

associated with a vector field X on Q, is defined by

P̂Xc5
1

g
^X,dc&52i\^X,dc&.

~iv! The operator P̂K corresponding to a second-degree homogeneous polynomial

PK5K i jp ip j

associated with a symmetric contravariant two-tensor K on Q, is defined by

P̂Kc52\2DKc52\2¹i~K i j¹jc !,

where DK is the pseudo-Laplacian operator defined by

DKc5¹i~K i j¹jc ! ~2.1!

~by ¹i we denote the covariant derivative with respect to the Levi-Civita connection!. For K

5G ~the contravariant metric tensor! we find the Laplace–Beltrami operator DG5D ,
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Dc5g i j¹i¹jc .

We shall use the co-differential or divergence operator d on contravariant skew-symmetric tensors

A, defined by

~dA! j¯k
5¹iA

i j¯k.

For a function ~zero-tensor!, d f 50. It follows that d2
50.

According to the notation used in Ref. 1, Remark 7.1, we shall identify a ~contravariant!
two-tensor K5(K i j) with the corresponding linear endomorphisms on vectors and one-forms, so

that we shall denote by K¹c the vector field image of the gradient ¹c ~whose components are

K i j] jc) and by K dc the one-form image of the differential dc ~whose components are

g ihKh j] jc). With this notation, the coordinate independent definition of the pseudo-Laplacian

~2.1! is

DKc5d~K¹c !.

We shall deal with quadratic classical observables of the kind

HK5
1
2PK1VK , VK :Q→R,

and with the corresponding second-order operators

ĤK5
1

2
P̂K1VK52

\2

2
DK1VK . ~2.2!

For K5G we find the Hamiltonian and the Schrödinger operator,

H5HG5
1

2
PG1V , Ĥ5

1

2
P̂G1V52

\2

2
D1V .

A classical observable F in involution with H, $F ,H%50, is a first integral ~or constant of motion!

of the Hamiltonian system generated by H. A linear operator F̂ commuting with Ĥ ,

@ F̂ ,Ĥ#50,

is called a symmetry operator of the Schrödinger equation. The following commutation rules hold

for these classical observables,

$HK1
,HK2

%5$PK1
,PK2

%1PK1¹V
K2

2PK2¹V
K1

,

~2.3!
$HK ,H%5$PK ,PG%1PK¹V2P¹V

K
.

We recall that a Killing tensor is a symmetric tensor ~of any order! satisfying one of the

following two equivalent conditions:

$PK ,PG%50 ⇔ ¹ (iK j¯k)
50, ~2.4!

where PK5K i j¯kp ip j. . .pk and the brackets ~¯! denote the symmetrization of the indices. The

first equation ~2.4! means that PK is a first integral of the godesic flow.

In the second equation ~2.3! the term $PK ,PG% is a third-degree homogeneous polynomial in

the momenta (p i), while the remaining term is of first degree. This shows that

Theorem 2.1: The quadratic function HK is a first integral of the Hamiltonian flow generated

by H if and only if K is a Killing tensor and K dV5dVK i.e., the following conditions are

equivalent
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$HK ,H%50 ⇔

$PK ,PG%50 ~K Killing tensor!,

¹VK5K¹V .
~2.5!

For the related operators we have

Theorem 2.2: The following conditions are equivalent

@ĤK ,Ĥ#50 ⇔

$PK ,GG%50 ~K Killing tensor!,

K¹V2¹VK1
\2

6
dC50,

⇔ $HK ,H%52
\2

6
PdC , ~2.6!

where

C5KR2RK, C i j
5K ihRh

j
2R ihKh

j
5K ihghkRk j

2R ihghkKk j, C i j
52C j i,

and R is the Ricci tensor:

Proof: In accordance with the above-given definitions we have

ĤĤKc52
\2

2
DS 2

\2

2
DKc1VKc D1VS 2

\2

2
DKc1VKc D

5
\4

4
DDKc2

\2

2
~D~VKc !1VDKc !1VVKc ,

ĤKĤc5
\4

4
DKDc2

\2

2
~DK~Vc !1VKDc !1VKVc ,

DK~Vc !5cDKV12K~dV ,dc !1VDKc ,

D~VKc !5cDVK12G~dVK ,dc !1VKDc .

Hence,

@Ĥ ,ĤK#c5
\4

4
@D ,DK#c1

\2

2
~cDKV12K~dV ,dc !2cDVK22G~dVK ,dc !!

5
\4

4
@D ,DK#c1\2~K¹V2¹VK!•¹c1

\2

2
~DKV2DVK!c . ~2.7!

Now we use a formula due to Carter8 which gives an explicit expression of the commutator of

a pseudo-Laplacian with the ordinary Laplacian,

@D ,DK#c52¹hK i j¹(i¹j¹h)c13¹h¹ (hK i j)¹(i¹j)c

1¹j~
1
2 ghk~¹ j¹ (iKhk)

2¹ i¹ ( jKhk)!1
4
3Kh

[ jR i]h!¹ic , ~2.8!

where the brackets @¯# denote the skew-symmetrization of the indices. Gathering together and

equating to zero the terms of third, first-, and zero-order derivatives of c on the right-hand side of

~2.7! we get the following equations, respectively,

¹ (hK i j)
50 ~K is a Killing tensor!,

K¹V2¹VK1
\2

6
d~KR2RK!50, ~2.9!

DKV2DVK50.
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The second-order terms in ~2.7! disappear because of the first equation ~2.9!. The last equation

~2.9! can be written d(K¹V2¹VK)50, so that it becomes a consequence of the second equation,

since C5KR2RK is skew-symmetric and d2
50. This proves the first equivalence ~2.6!. The

second equivalence follows from the last equation ~2.3!, since $PK ,PG% is a homogeneous poly-

nomial of third degree in (p i), while PK¹V2P¹V
K

and PdC are of first degree. j

The following three propositions are a consequence of Theorem 2.2 and of the Carter formula

~2.8!.

Proposition 2.3: If K5(K i j) is a symmetric tensor, then @ P̂K , P̂G#50 if and only if K is a

Killing tensor and

dC5d~KR2RK!50. ~2.10!

Proof: This is a special case of the first equivalence ~2.6!, for V50 and VK50. j

We call ~2.10! the Carter condition. Note that @ P̂K , P̂G#50 is equivalent to @DK ,D#50.

Proposition 2.4: If K is a Killing tensor, then

$H ,HK%50 ⇒ @Ĥ ,ĤK#c5
\4

6
dC"¹c . ~2.11!

Proof: For a Killing tensor the Carter formula ~2.8! reduces to

@D ,DK#c5
2
3dC"¹c

so that ~2.7! becomes

@Ĥ ,ĤK#c5
\4

6
dC•¹c1\2~K¹V2¹VK!1

\2

2
d~K¹V2¹VK!.

Because of the equivalence ~2.5!, we get the second equation ~2.11!. j

Proposition 2.5: Let HK5
1
2PK1VK be a quadratic first integral i.e., $HK ,H%50. Then,

@ĤK ,Ĥ#50 if and only if the Carter condition (2.10) is satisfied.

Proof: If ~2.10! holds, then @ĤK ,Ĥ#50 because of the implication ~2.11!. Conversely, the

simultaneous conditions @ĤK ,Ĥ#50 and $HK ,H%50 imply dC50 because of the equivalence

~2.6! j

As a corollary of Theorem 2.2 we have

Theorem 2.6: If R5kG, then

$HK ,H%50 ⇔ @ĤK ,Ĥ#50.

This shows that on Einstein manifolds ~in particular, on manifolds with constant curvature, on flat

manifolds, on Ricci-flat manifolds, etc.! a quadratic function HK5
1
2PK1VK is a first integral if

and only if the corresponding operator ĤK , defined according to ~2.1! and ~2.2!, is a symmetry of

the Schrödinger equation.

For a first-order operator P̂X we have a similar equivalence, but without any condition ~like

the Carter condition! involving the Ricci tensor:

Theorem 2.7: The operator P̂X commutes with the Laplacian if and only if X is a Killing

vector,

@ P̂X ,D#50 ⇔ $PX ,PG%50.
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Proof: This follows from three basic facts. ~i! A vector field is a Killing vector if and only if

its covariant components satisfy equation

¹iX j1¹jX i50. ~2.12!

This is in accordance with ~2.4!. ~ii! If X5(X i) is a Killing vector, then9

DX i
1R j

iX j
50, ~2.13!

where R i j is the Ricci tensor. This follows from the general commutation rule

¹l¹kX i2¹k¹lX i5XmR
•ikl
m , ~2.14!

where R
•ikl
m are the components of the Riemann tensor. Indeed, by setting g ilR

•ikl
m

5Rk
m , we get

g il~¹l¹kX i2¹k¹lX i!5Rk
mXm .

For a Killing vector, ¹kX i is skew-symmetric due to ~2.12! thus,

2g il¹l¹iXk5Rk
mXm ,

and this equation is equivalent to ~2.13!. ~iii! For any vector field X, the general commutation

relation

@X,D#c52~DX l
1X iR i

l!¹lc22¹hX i¹h¹ic , ~2.15!

holds, where X(c)5X i¹ic . Indeed,

@X,D#c5@X i¹i ,ghk¹h¹k#c

5X ighk¹i¹h¹kc2ghk¹h¹k~X i¹ic !

5ghk~X i¹i¹h¹kc2X i¹h¹k¹ic2¹h¹kX i¹ic2¹kX i¹h¹ic2¹hX i¹k¹ic ! ~2.16!

However, because of ~2.14!,

¹i¹h¹kc5¹h¹i¹kc5¹jcR
•khi
j

5¹h¹k¹ic1¹jcR
•khi
j ,

since ¹i¹kc is symmetric. Thus, the last expression ~2.16! becomes

@X,D#c5ghkX iR
•khi
j ¹jc2DX i¹ic22¹hX i¹h¹ic

and ~2.15! is proved. Assume that X is a Killing vector. Then the first term on the right-hand side

of ~2.15! vanishes because of ~2.13!, as well as the second term, since ¹hX i is skew-symmetric

because of ~2.12!. Conversely, assume that ~2.15! is satisfied for all functions c. Then the coeffi-

cients of the first and second derivatives of c must vanish separately. The coefficients of the

second derivatives yield equation ¹hX i]h] ic50, which shows that ¹hX i is skew-symmetric.

Thus, X is a Killing vector according to ~2.12!, and the first-order terms vanish due to ~2.13!. j

From Theorem 2.7 it follows that

Theorem 2.8: The operator P̂X commutes with the Schrödinger operator Ĥ if and only if X

is a Killing vector and ^X,dV&50 i.e.,

@ P̂X ,Ĥ#50⇔$PX ,H%50. ~2.17!

Proof: Since

@ P̂X , 1
2P̂G1V#c5

1
2@ P̂X , P̂G#c1 P̂X~Vc !2VP̂Xc5

1
2@ P̂X , P̂G#c1 P̂X~V !c ,
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the first commutation relation ~2.17! is equivalent to

@ P̂X ,D#50, P̂X~V !50.

Moreover,

$PX , 1
2PG1V%5

1
2$PX ,PG%1$PX ,V%5

1
2$PX ,PG%1^X,dV&,

and the second commutation relation ~2.17! is equivalent to

$PX ,PG%50, ^X,dV&50.

Thus, the two commutation relations are equivalent due to Theorem 2.7. j

III. SYMMETRY OPERATORS ASSOCIATED WITH THE ORTHOGONAL SEPARATION OF
THE HAMILTON–JACOBI EQUATION

A Killing–Stäckel algebra is an n-dimensional linear space K of Killing two-tensors with

common normal eigenvectors.1 It can be proved that GPK and that all functions PK , KPK, are

in involution. The Hamilton–Jacobi equation associated with a natural Hamiltonian

H5
1
2PG1V5

1
2g i j~qI !p ip j1V~qI !

is separable ~i.e., integrable by separation of variables! in orthogonal coordinates if and only if

there exists a Killing–Stäckel algebra such that equation d(K dV)50 is satisfied for all KPK, or

for a single Killing tensor K with simple eigenvalues ~such a tensor is called a characteristic

tensor of K!. Then: ~i! The separation occurs in any coordinate system (q i) such that dq i are

~common! eigenforms of the elements of K. In these coordinates all elements of K are diagonal-

ized,

K5K ii] i ^ ] i5l ig ii] i ^ ] i , ~3.1!

l i being the eigenvalues of K ~for K5G we have l i
51). ~ii! There are local functions VK on Q

such that dVK5K dV or

¹VK5K¹V ~3.2!

for all KPK. It follows that the functions

HK5
1
2PK1VK , KPK,

are first integrals in involution,

$HK1
,HK2

%50, ;K1 ,K2PK.

We denote by

H5~K,V !

the n-dimensional space of these first integrals determined by a Killing-Stäckel algebra K and by

a potential V satisfying ~3.2!.

In general, the linear operators ĤK ~2.2! corresponding to these quadratic first integrals do not

commute, as shown by the following

Theorem 3.1: Let H5(K,V) be the space of first integrals in involution associated with the

orthogonal separation of the Hamilton–Jacobi equation. Then the following conditions are

equivalent
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~a! @ĤK ,Ĥ#50, ;KPK,

~b! d~KR2RK!50, ;KPK,

~c! ] iR i j2G iR i j50, iÞ j , i n.s., ~3.3!

~d! @ĤK1
,ĤK2

#50, ;K1 ,K2 ,PK,

~e! d~K1RK22K2RK1!50, ;K1 ,K2 ,PK,

where R is the Ricci tensor, R i j are its components in any orthogonal separable coordinate system

and G i are the contracted Christoffel symbols, G i5gh jGh j ,i .

The proof will be given in Sec. V. In Sec. VI, a theorem analogous to Theorem 3.1 will be

stated for the general nonorthogonal separation of the Hamilton–Jacobi equation, where the Kill-

ing tensors involved are in ‘‘standard form.’’ For the proofs of these theorems we need preliminary

general results about Killing tensors and second-order operators. Indeed, since we do not know

how to extend the Carter formula to two arbitrary symmetric tensors, we are able to study the

commutator @ĤK1
,ĤK2

# only for Killing tensors in orthogonal form ~Secs. IV and V! or in stan-

dard form ~Secs. VII and VIII!.
Remark 3.2: Note that conditions ~b!, ~c!, and ~e! in ~3.3! do not involve the potentials VK .

Remark 3.3: Since GPK, equation ~3.3a! is an obvious consequence of ~3.3d!, while ~3.3b! is

a consequence of ~3.3e!. Moreover, the equivalence of ~3.3a! and ~3.3b! follows from Theorems

2.1 and 2.2. We call condition ~3.3b!,

d~KR2RK!50, ;KPK

the pre-Robertson condition. It means that the Carter condition ~2.10! is satisfied by all elements

of the Killing–Stäckel algebra. Theorem 3.1 shows that Eq. ~3.3c!,

] iR i j2G iR i j50 ~ iÞ j , i n.s.!

is the coordinate expression of the pre-Robertson condition. The pre-Robertson condition ~3.3b! is

an obvious consequence of the Robertson condition1

KR2RK50, ;KPK,

whose coordinate expression is

R i j50, iÞ j . ~3.4!

Note that both conditions are fulfilled when R5kG. We know1 that in separable orthogonal

coordinates

] iG j5
2
3R i j , iÞ j , ~3.5!

and that the Schrödinger equation is freely separable if and only if the Hamilton–Jacobi equation

is orthogonally separable and the Robertson condition holds. Hence,

Theorem 3.4: If the Schrödinger equation associated with an orthogonal separable Hamil-

tonian system is freely separable, then all the operators ĤK corresponding to the quadratic first

integrals in involution HKPH commute.

In particular, they commute with the Schrödinger operator Ĥ5ĤG . From Theorem 3.1 we

derive an extension of Theorem 2.6,

Theorem 3.5: On Einstein manifolds all operators ĤK , KPK, associated with the quadratic

first integrals of an orthogonal separable system commute.
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Remark 3.6: In orthogonal separable coordinates the components of the Killing tensors and

the potential functions assume the Stäckel form

g ii
5w ~n !

i
, V5f i~q i!w ~n !

i
, K j

ii
5w ~ j !

i
, VKj

5f i~q i!w ~ j !
i

,

where (Kj) is a local basis of K, with Kn5G. Thus, in terms of Stäckel matrices, a local basis of

H is given by

H j5
1
2w ~ j !

i
~p i

2
12f i!.

As it will be shown ~Remark 5.2!, the corresponding operators assume the form

Ĥ jc52
\2

2
w ~ j !

i S ] i
2c2G i] ic2

2

\2 f ic D . ~3.6!

The Robertson condition is equivalent to ] jG i50 for iÞ j . This means that the contracted Christ-

offel symbols G i are functions of the corresponding coordinate q i only.

IV. KILLING TENSORS DIAGONALIZED IN ORTHOGONAL COORDINATES

In the next section we shall analyze the commutation relations of the second-order operators

assuming that all the tensors K involved, including the metric tensor G, are simultaneously

diagonalized in orthogonal coordinates (q i), so that they assume the orthogonal form ~3.1!. This

is equivalent to assume that all these tensors have common normal eigenvectors ~or closed eigen-

forms!. For this purpose we need some preliminary theorems about Killing tensors diagonalized in

orthogonal coordinates. For such a Killing tensor the following equations hold:

] il
j
5~l i

2l j!] i ln g j j

] il
i
50

] i~l jg j j!5l i] ig
j j

] i
2~l jg j j!5l i] i

2g j j.

~ i , j n.s.! ~4.1!

We call Eisenhart–Killing equations the first equations ~4.1!.10 They characterize a Killing

tensor and imply the remaining equations.

In orthogonal coordinates, the nonvanishing Christoffel symbols are

G i j
j

5G j i
j

52
1
2 ] i ln g j j, i n.s.,

~4.2!
G j j

i
52

1
2g ii] ig j j , iÞ j .

It follows that

G i5
1

2
] i(

k
ln gkk

2] i ln g ii, ~4.3!

and

(
i

G ih
i

52Gh2]h ln ghh. ~4.4!

Proposition 4.1: If (q i) are orthogonal coordinates in which a Killing tensor K is diagonal-

ized, then

~l i
2l j!~] iG j2] jG i!50 ~ i , j n.s.!. ~4.5!
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Proof: For l i
5l j Eq. ~4.5! is obviously satisfied. Assume l iÞl j. Because of ~4.3! and ~4.1!,

] iG j2] jG i52] i] j ln g j j
1] j] i ln g ii

5] i] j ln g ii
2] j] i ln g j j

5] i

] jl
i

l j
2l i2] j

] il
j

l i
2l j

5
1

~l i
2l j!2 @] i] jl

i~l j
2l i!2] jl

i] i~l j
2l i!2] j] il

j~l i
2l j!1] il

j] j~l i
2l j!#50,

since ] il
i
50. j

Proposition 4.2: Let KI , I51, 2, be two Killing tensors simultaneously diagonalized in

orthogonal coordinates. Then,

~l1
i l2

j
2l2

i l1
j !~] iG j2] jG i!50 ~ iÞ j n.s.!. ~4.6!

Proof: Because of ~4.5!,

~l1
i
2l1

j !~] iG j2] jG i!50, ~l2
i
2l2

j !~] iG j2] jG i!50. ~4.7!

Assume l I
jÞ0. If we multiply the first equation ~4.7! by l2

j , the second one by l1
j and subtract the

two resulting equations, then we get ~4.6!. If l2
j
50, then the second equation ~4.7! becomes

l2
i (] iG j2] jG i)50 and ~4.6! is satisfied. Similarly for l1

j
50. j

Proposition 4.3: Let KI5(K I
i j), I51, 2, be two Killing tensors simultaneously diagonalized in

orthogonal coordinates. Let us define

C5K1DK22K2DK1 , C i j
5K1

ihDhkK2
k j

2K2
ihDhkK1

k j , ~4.8!

where D5(D i j) is a geometrical object. Then,

C i j
5g iig j j~l1

i l2
j
2l2

i l1
j !D i j , C j

i
5C

• j
i

5g ii~l1
i l2

j
2l2

i l1
j !D i j ~4.9!

and

¹iC j
i
5(

i
g ii~l1

i l2
j
2l2

i l1
j !S ] iD i j2G iD i j1

1

2
] i ln g j j~D j i2D i j! D . ~4.10!

Proof: In orthogonal coordinates

C i j
5K1

iiD i jK2
j j

2K2
iiD i jK1

j j

and ~4.9! follow from K I
ii

5l I
ig ii. Moreover, by definition of covariant derivative,

¹iC j
i
5] iC j

i
1G ih

i C j
h
2G i j

h Ch
i . ~4.11!

We compute these three terms separately by using Eqs. ~4.1!. For the first term,

] iC j
i
5] ig

ii~l1
i l2

j
2l2

i l1
j !D i j1g iiD i j~l1

i ] il2
j
2l2

i ] il1
j !1g ii~l1

i l2
j
2l2

i l1
j !] iD i j

5g ii~l1
i l2

j
2l2

i l1
j !~D i j] i ln g ii

1] iD i j!1g iiD i j~l1
i ~l2

i
2l2

j !2l2
i ~l1

i
2l1

j !!] i ln g j j

5g ii~l1
i l2

j
2l2

i l1
j !@~] i ln g ii

2] i ln g j j!D i j1] iD i j# . ~4.12!

To compute the second term we use formula ~4.4!,

G ih
i C j

h
52g ii~l1

i l2
j
2l2

i l1
j !~G i1] i ln g ii!D i j . ~4.13!
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To compute the third term we use formulas ~4.2!,

(
i ,h

G i j
h Ch

i
5(

hÞ j
G j j

h Ch
j
1(

iÞ j
(

h
G i j

h Ch
i
5¯ .

Since C i
i
50 ~i n.s.!,

¯5(
h

G j j
h Ch

j
1(

iÞ j
G i j

i C i
i
1(

iÞ j
(
hÞi

G i j
h Ch

i

5(
i

G j j
i C i

j
1(

iÞ j
G i j

j C j
i

52
1

2 (
i

g ii~l1
i l2

j
2l2

i l1
j !@2] ig j jg

j jD j i1] i ln g j jD i j#

52
1

2 (
i

g ii~l1
i l2

j
2l2

i l1
j !] i ln g j j~D i j1D j i!. ~4.14!

Thus, ~4.10! follows from (4.12)1(4.13)2(4.14). j

Remark 4.4: From the first equations ~4.9!, it follows that: ~i! C ii
50, ~ii! the diagonal com-

ponents D ii are not involved in the definition ~4.8! of C, ~iii! if D is symmetric, D i j5D j i , then

C i j
1C j i

50 and C is skew-symmetric.

Remark 4.5: For D i j5] iG j , due to ~4.6!, Eq. ~4.10! becomes

¹iC j
i
5(

i
g ii~l1

i l2
j
2l2

i l1
j !~] i

2G j2G i] iG j!, ~4.15!

and, due to the first equations ~4.9!, C i j
1C j i

50. Hence, C is skew-symmetric and ~4.15! gives the

components of dC. It follows that

dC50 ⇔ (
i

g ii~l1
i l2

j
2l2

i l1
j !~] i

2G j2G i] iG j!50. ~4.16!

Remark 4.6: For K15K and K25G, the definition ~4.8! and equations ~4.9! become

C5KD2DK, C i j
5g iig j j~l i2l j!D i j , C j

i
5g ii~l i

2l j!D i j ,

and ~4.10! reduces to

¹iC j
i
5(

i
g ii~l i

2l j!~] iD i j2G iD i j1
1
2] i ln g j j~D j i2D i j!!.

For D i j5] iG j , because of ~4.5!, we have

¹iC j
i
5(

i
g ii~l i

2l j!~] i
2G j2G i] iG j!. ~4.17!

C is skew-symmetric and ~4.17! gives the components of dC. Thus,

dC50 ⇔ (
i

g ii~l i
2l j!~] i

2G j2G i] iG j!50. ~4.18!
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Remark 4.7: If the Killing tensor K in Proposition 4.1 has simple eigenvalues, l iÞl j for i

Þ j , then ~4.5! implies

] iG j5] jG i . ~4.19!

This is the case of a characteristic Killing tensor associated with the orthogonal separation. This

proves

Proposition 4.8: Equation (4.19) holds for any separable orthogonal coordinate system.

This property has some interesting consequences. First, from ~4.19! and ~4.3! it follows that

Proposition 4.9: In any orthogonal separable coordinate system

] i] j ln g ii
5] i] j ln g j j, iÞ j .

A second consequence is concerned with the eigenvalues of a characteristic Killing tensor.

Proposition 4.10: For the eigenvalues (l i) of a characteristic Killing tensor of a Killing–

Stäckel algebra the following equations hold:

] i] j ln g ii
52

] jl
i] il

j

~l i
2l j!2 , iÞ j , ~4.20!

Proof: For l iÞl j, the first equations ~4.1! can be written

] j ln g ii
5

] jl
i

l j
2l i .

If we apply the partial derivative ] i to this formula, and use again ~4.1!, then we get Eq. ~4.20!.j
A third consequence is concerned with the Robertson and the pre-Roberston conditions.

Proposition 4.11: For any orthogonal separable coordinate system qI 5(q i) there are local

functions F(qI ) such that

G i5] iF .

The Robertson condition (3.3c) is equivalent to

] i] jF50, iÞ j , ~4.21!

and the pre-Robertson condition (3.4) is equivalent to

] j@] i
2F2

1
2~] iF !2#50, iÞ j . ~4.22!

Equation ~4.21! means that the function F is a sum of functions depending on a single coordinate

i.e., of functions constant on the leaves of the web: F5( i F i(q i). Equation ~4.22! means that each

function ] i
2F21/2(] iF)2 is a function of the coordinate corresponding to the index only. A further

interpretation of the pre-Robertson condition is expressed by the following

Proposition 4.12: The pre-Robertson condition is equivalent to

] iQ i j50, iÞ j n.s.,

where

Q i j5e2FR i j . ~4.23!

Proof: ] iQ i j5e2F(] iR i j2] iFR i j). j

Remark 4.13: Let qI 5(q i) and qI 85(q i8) be two equivalent and equioriented orthogonal

separable coordinate systems. Let us set
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A i
i8

5
]q i8

]q i , A
i8

i
5

]q i

]q i8
, A5det@A i

i8#5)
i

A i
i8 ,

~4.24!

G5det@g i j#5)
i

g ii, G85det@g i8 j8#5)
i8

g i8i8.

Note that A i
j8

50 for iÞ j and that A.0. The link between functions F and F8 corresponding to

these coordinates is

F85F2ln A1const.

i.e.,

e2F85cAe2F. ~4.25!

Indeed, the relationship between the contracted Christoffel symbols is

G i8
5A

i8

i
~G i2] i ln A i

i8!5A
i8

i
~G i2] i ln A !. ~4.26!

To prove ~4.26! we observe that, since A i
i8 is a function of q i only,

] i ln A5] i ln )
j

A j
j8

5] i ln A i
i8 .

Moreover, since A.0, from ~4.24! it follows that

AG85AAG ,

] i8
ln AG85A

i8

i
~] i ln A1] i ln AG !, ~4.27!

] i8
ln g i8i85A

i8

i
~2] i ln A i

i8
1] i ln g ii!.

By ~4.3! and ~4.27! we get

G i8
5] i8

ln AG82] i8
ln g i8i8

5A
i8

i
~] i ln A1] i ln AG22] i ln A i

i8
2] i ln g ii!

5A
i8

i
~G i1] i ln A22] i ln A i

i8!,

which implies both equations ~4.26!. Finally, we observe that the object Q i j is defined by ~4.23! up

to a multiplicative constant, since F is defined up to an additive constant. From ~4.23!, ~4.25! and

the first equation ~4.27! it follows that

Q i8 j8
5e2F8R i8 j8

5cAe2FA
i8

i
A

j8

j
R i j5cAA

i8

i
A

j8

j
Q i j .

Thus,

1

AG8
Q i8 j8

5
c

AG
A

i8

i
A

j8

j
Q i j .
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V. COMMUTATION RELATIONS IN ORTHOGONAL COORDINATES

Proposition 5.1: If a symmetric tensor K5(K i j) is diagonalized in orthogonal coordinates,

then the corresponding pseudo-Laplacian assumes the form

DKc5A i] i
2c1B i] ic , A i

5K ii
5l ig ii, B i

5g ii~] il
i
2l iG i!. ~5.1!

Proof: By definition ~2.1! and formula ~4.4!,

DKc5¹i~K i j] jc !

5] i~K i j] jc !1G ih
i Kh j] jc

5] i~K ii] ic !1G ih
i Khh]hc

5K ii] i
2c1~]hKhh

1G ih
i Khh!]hc

5l ig ii] i
2c1~]h~lhghh!2lhghh~Gh1]h ln ghh!!]hc

5l ig ii] i
2c1ghh~]hlh

2lhGh!]hc .

j

Remark 5.2: For the ordinary Laplacian, K ii
5g ii, l i

51, and B i
52g iiG i , so that

Dc5g ii@] i
2c2G i] ic# .

A second-order operator ~2.12! assumes the form

ĤKc5
\2

2
~A i] i

2c1B i] ic !1VKc5
\2

2
g ii~l i] i

2c1~] il
i
2l iG i!] ic !1VKc . ~5.2!

For a Killing tensor K Eqs. ~4.1! hold, so that

DKc5g iil i@] i
2c2G i] ic# .

For a basis (Kj) of a Killing–Stäckel algebra we have w ( j)
i

5l j
ig ii ~Remark 3.6! and we find

expressions ~3.6! of the corresponding operators Ĥ j .

Proposition 5.3: The commutator of two second-order operators of the kind (5.2) has the

following expression:

@ĤK1
,ĤK2

#c5
\4

2
~A1

i ] iA2
j
2A2

i ] iA1
j !] i] j

2c1
\4

4
~A1

i ] i
2A2

j
2A2

i ] i
2A1

j
1B1

i ] iA2
j
2B2

i ] iA1
j !] j

2c

1
\4

2
~A1

i ] iB2
j
2A2

i ] iB1
j !] i] jc1S \4

4
~A1

i ] i
2B2

j
1B1

i ] iB2
j
2A2

i ] i
2B1

j
2B2

i ] iB1
j !

2\2~A1
j ] jVK2

2A2
j ] jVK1

! D ] jc2
\2

2
~DK1

VK2
2DK2

VK1
!c . ~5.3!

Proof: For two second-order operators ~2.2!,
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@ĤK1
,ĤK2

#5F1

2
P̂K1

1VK1
,

1

2
P̂K2

1VK2
G

5
1

4
@ P̂K1

, P̂K2
#1

1

2
@ P̂K1

,VK2
#2

1

2
@ P̂K2

,VK1
#

5
\4

4
@DK1

,DK2
#2

\2

2
@DK1

,VK2
#1

\2

2
@DK2

,VK1
# .

Since

d~ f X!5X"¹ f 1 f dX,

we have

@DK ,V#c5DK~Vc !2VDKc

5d~K¹~Vc !!2VDKc

5d~~K¹V !c1~K¹c !V !2VDKc

5cDKV12K~¹c ,¹V !

5DKVc12A i] iV] ic .

Hence,

@ĤK1
,ĤK2

#c5
\4

4
@DK1

,DK2
#c1

\2

2
~DK2

VK1
2DK1

VK2
!c1\2~K2¹VK1

2K1¹VK2
!•¹c ,

~5.4!

Because of ~5.1!,

DK1
DK2

c5A1
i ] i

2~A2
j ] j

2c1B2
j ] jc !1B1

i ] i~A2
j ] j

2c1B2
j ] jc !

5A1
i ~] i

2A2
j ] j

2c12] iA2
j ] i] j

2c1A2
j ] i

2] j
2c1] i

2B2
j ] jc12] iB2

j ] i] jc1B2
j ] i

2] jc !

1B1
i ~] iA2

j ] j
2c1A2

j ] i] j
2c1] iB2

j ] jc1B2
j ] i] jc !

5A1
i A2

j ] i
2] j

2c1~2A1
i ] iA2

j
1B1

i A2
j
1A1

j B2
i !] i] j

2c1~A1
i ] i

2A2
j
1B1

i ] iA2
j !] j

2c

1~2A1
i ] iB2

j
1B1

i B2
j !] i] jc1~A1

i ] i
2B2

j
1B1

i ] iB2
j !] jc ,

so that,

@DK1
,DK2

#c5DK1
DK2

c2DK2
DK1

c

52~A1
i ] iA2

j
2A2

i ] iA1
j !] i] j

2c1~A1
i ] i

2A2
j
2A2

i ] i
2A1

j
1B1

i ] iA2
j
2B2

i ] iA1
j !] j

2c

12~A1
i ] iB2

j
2A2

i ] iB1
j !] i] jc1~A1

i ] i
2B2

j
1B1

i ] iB2
j
2A2

i ] i
2B1

j
2B2

i ] iB1
j !] jc .

Thus, from ~5.4! we derive ~5.3!. j

Proposition 5.4: Let K1 and K2 be symmetric tensors simultaneously diagonalized in orthogo-

nal coordinates. Then, @ĤK1
,ĤK2

#50 if and only if

A1
i ] iA2

j
2A2

i ] iA1
j
50 ~ i n.s.!, ~5.5a!

5237J. Math. Phys., Vol. 43, No. 11, November 2002 Remarks on the connection . . . II.



(
i

~A1
i ] i

2A2
j
2A2

i ] i
2A1

j
1B1

i ] iA2
j
2B2

i ] iA1
j !12~A1

j ] jB2
j
2A2

j ] jB1
j !50, ~5.5b!

A1
i ] iB2

j
2A2

i ] iB1
j
1A1

j ] jB2
i
2A2

j ] jB1
j
50 ~ iÞ j n.s.!, ~5.5c!

\2

4 (
i

~A1
i ] i

2B2
j
1B1

i ] iB2
j
2A2

i ] i
2B1

j
2B2

i ] iB1
j !2A1

j ] jVK2
1A2

j ] jVK1
50 ~ j n.s.!, ~5.5d!

DK1
VK2

2DK2
VK1

50. ~5.5e!

Proof: ~i! Assume that ~5.3! vanishes identically for all functions c. For c51 we get ~5.5e!
and the last term in ~5.3! disappears. For c5q j we get ~5.5d!, so that also the fourth term in ~5.3!
disappears. As a consequence, for c5(q j)2 we get ~5.5b! and we reduce the vanishing of ~5.3! to

(
i , j

~A1
i ] iA2

j
2A2

i ] iA1
j !] i] j

2c1 (
i , jÞ

~A1
i ] iB2

j
2A2

i ] iB1
j !] i] jc50. ~5.6!

For c5q1q2, we have ] i] jc5d j
1d i

2
1d i

1d j
2, thus we get ~5.5c! for distinct indices and moreover,

~5.6! reduces to

(
i , j

~A1
i ] iA2

j
2A2

i ] iA1
j !] i] j

2c50. ~5.7!

Finally, for c5q1(q2)2 we have ] j
2] ic5] j

2(d i
1(q2)2

12q1q2d i
2)52d i

1d j
2
14d j

1d j
2d i

2

52d i
1d j

2. Thus, we get ~5.5a! for distinct indices ~and no summation!, so that ~5.7! reduces to

(
j

~A1
j ] jA2

j
2A2

j ] jA1
j !] j

3c50.

This shows that ~5.5a! also holds for i5 j . ~ii! Conversely, assume that ~5.5! hold. Then, due to

~5.5a,d,e!, Eq. ~5.3! reduces to

@ĤK1
,ĤK2

#c5
\4

4
~A1

i ] i
2A2

j
2A2

i ] i
2A1

j
1B1

i ] iA2
j
2B2

i ] iA1
j !] j

2c1
\4

2
~A1

i ] iB2
j
2A2

i ] iB1
j !] i] jc

and, because of ~5.5b!, we obtain

@ĤK1
,ĤK2

#c5
\4

2 (
i , jÞ

~A1
i ] iB2

j
2A2

i ] iB1
j !] i] jc .

But this last expression vanishes identically because of the skew-symmetry of Eq. ~5.5c!. j

Remark 5.5: Since

$PK1
,PK2

%5$A1
i p i

2,A2
j p j

2%52p ip j
2~A1

i ] iA2
j
2A2

i ] iA1
j !, ~5.8!

Eq. ~5.5a! is equivalent to $PK1
,PK2

%50. Thus,

@ĤK1
,ĤK2

#50 ⇒ $PK1
,PK2

%50. ~5.9!

Theorem 5.6: Let K be a symmetric tensor diagonalized in orthogonal coordinates. Then the

following conditions are equivalent:
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@ĤK ,Ĥ#50 ⇔

$PK ,PG%50 ~K Killing tensor!

\2

4
dC1K¹V2¹VK50

⇔ $HK ,H%52
\2

4
PdC , ~5.10!

where

C5KD2DK, D5~D i j!5~] iG j!.

Proof: We use ~5.5! of Proposition 5.4 for the case

K15K

K25G
⇔

l1
i
5l i

l2
i
51

⇔

A1
i
5l ig ii, B1

i
5g ii~] il

i
2l iG i!

A2
i
5g ii, B2

i
52g iiG i

.

Assume @ĤK ,ĤG#50. From ~5.9! it follows that K is a Killing tensor. Then we use ~4.1! and in

~5.5! we consider

B1
i
52g iil iG i , B2

i
52g iiG i , ~5.11!

and

] iA1
j
5l i] ig

j j, ] iB1
j
52] i~g j jl jG j!52l i] ig

j jG j2g j jl j] iG j ,

] iA2
j
5] ig

j j, ] iB2
j
52] i~g j jG j!52] ig

j jG j2g j j] iG j ,

~5.12!
] i

2A1
j
5l i] i

2g j j, ] i
2B1

j
52l i] i

2g j jG j22l i] ig
j j] iG j2g j jl j] i

2G j ,

] i
2A2

j
5] i

2g j j, ] i
2B2

j
52] i

2g j jG j22] ig
j j] iG j2g j j] i

2G j ,

Equations ~5.5a! and ~5.5b! are then identically satisfied, while the remaining three equations

become

~l i
2l j!~] iG j2] jG i!50 ~ iÞ j n.s.!,

\2

4 (
i

g ii~l i
2l j!~] i

2G j2G i] iG j!1l j] jV2] jVK50 ~ j n.s.!, ~5.13!

d~K¹V2¹VK!50.

Due to ~4.5!, the first equation is identically satisfied. According to Remark 4.6 and Eq. ~4.17!,
the second equation ~5.13! is equivalent to

\2

4
dC1K¹V2¹VK50,

where C is skew-symmetric. Since d2
C50, the last equation ~5.13! is a consequence of the second

equation ~5.13!. The above-given reasoning is reversible, and the first equivalence ~5.10! is

proved. The second equivalence follows from last equation ~2.3!. j

Remark 5.7: The comparison between Theorem 2.2, proved by using the Carter formula ~2.8!
without any special assumption on K, and Theorem 5.6, proved under the assumption that K is

diagonalized in orthogonal coordinates, shows that for such a Killing tensor the following equation

holds:

d~KD2DK!5
2
3d~KR2RK!, ~5.14!
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where D5(] iG j). Note that the components D ii are not involved in the definition of C5KD

2DK ~Remark 4.4!. This is in accordance with formula ~3.5!, which holds in separable orthogonal

coordinates.

Now we apply Proposition 5.4 to the case of two Killing tensors.

Theorem 5.8: Let K1 and K2 be Killing tensors simultaneously diagonalized in orthogonal

coordinates. Then $PK1
,PK2

%50 and the following conditions are equivalent:

@ĤK1
,ĤK2

#50 ⇔

\2

4
dC1K1¹VK2

2K2¹VK1
50 ⇔ $HK1

,HK2
%52

\2

4
PdC , ~5.15!

where

C5K1DK22K2DK1 , D5~] iG j!. ~5.16!

Proof: The components of C defined in ~5.16! are @recall ~4.8! and ~4.9!#

C i j
5g iig j j~l1

i l2
j
2l2

i l1
j !] iG j , C j

i
5C

• j
i•

5g ii~l1
i l2

j
2l2

i l1
j !] iG j .

The involutivity condition $PK1
,PK2

%50 follows from ~5.8!, ~5.1!, and ~4.1!. We use ~5.5!. Ac-

cording to ~5.1!, ~5.11!, and ~5.12!, for a Killing tensor KI (I51,2) we have

A I
i
5l I

ig ii, B I
i
52A I

iG i ,

] iA I
j
5A I

i] ig
j j

5l I
i] ig

j j,

] i
2A I

j
5A I

i] i
2g j j

5l I
i] i

2g j j ~5.17!

] iB I
j
52] i~A I

jG j!52] iA I
jG j2A I

j] iG j ,

] i
2B I

j
52] i

2A I
jG j22] iA I

j] iG j2A I
j] i

2G j .

Because of the first two equations ~5.17!, Eq. ~5.5a! is identically satisfied and the sum of the first

two terms in Eq. ~5.5b! vanishes, so that this equation reduces to

(
i

G i@A1
i ] iA2

j
2A2

i ] iA1
j #12@A1

j ] j~A2
j G j!2A2

j ] j~A1
j G j!#50.

But all the terms in this sum vanish because of ~5.5a!. Thus, also ~5.5b! is identically satisfied.

Equation ~5.5c! becomes

A1
i ] i~A2

j G j!2A2
i ] i~A1

j G j!1A1
j ] j~A2

i G i!2A2
j ] j~A1

i G i!50.

Because of ~5.5a! it reduces to

~A1
i A2

j
2A2

i A1
j !~] iG j2] jG i!50 ~ iÞ j , n.s.!,

that is ~up to a factor g iig j j) to ~4.6!, which is identically satisfied. Due to the last two equations

~5.17!, Eq. ~5.5d! becomes

\2

4 (
i

@A1
i ] i

2~A2
j G j!2A1

i G i] i~A2
j G j!2A2

i ] i
2~A1

j G j!1A2
i G i] i~A1

j G j!#1A1
j ] jVK2

2A2
j ] jVK1

50,

thus,
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\2

4 (
i

@~A1
i A2

j
2A2

i A1
j !] i

2G j#1
\2

4 (
i

@A1
i G j] i

2A2
j
2A2

i G j] i
2A1

j
12A1

i ] iA2
j ] iG j22A2

i ] iA1
j ] iG j#

2
\2

4 (
i

G i@A1
i ] i~A2

i G j!2A2
i ] i~A1

j G j!#1A1
j ] jVK2

2A2
j ] jVK1

50.

Because of the second equation ~5.17! and ~5.5a!, the second sum vanishes identically and this

equation reduces to

\2

4 (
i

@~A1
i A2

j
2A2

i A1
j !] i

2G j#2
\2

4 (
i

@G i~A1
i A2

j
2A2

i A1
j !] iG j#1A1

j ] jVK2
2A2

j ] jVK1
50,

which is equivalent to

\2

4 (
i

@g ii~l1
i l2

j
2l2

i l1
j !~] i

2G j2G i] iG j!#1l1
j ] jVK2

2l2
j ] jVK1

50. ~5.18!

Due to ~4.15! this equation is equivalent to the second equation in ~5.15!. So, the first com-

mutation relation ~5.15! is equivalent to the second equation ~5.15! plus the last equation ~5.5!.
However, C is skew-symmetric ~Remark 4.5!, so that the second equation ~5.15! implies equation

d(K1¹VK2
2K2¹VK1

)50, that is ~5.5e!. This proves the first equivalence ~5.15!. The second

equivalence follows from the first equation ~2.3!, which now reads $HK1
,HK2

%5P(K1¹VK2

2K2¹VK1
).

Proposition 5.9: Let K1 and K2 be Killing tensors simultaneously diagonalized in orthogonal

coordinates. Then

@ĤK1
,Ĥ#50, @ĤK2

,Ĥ#50⇒@ĤK1
,ĤK2

#50. ~5.19!

Proof: Since $PK1
,PG%50, due to Theorem 5.6 the first two conditions ~5.19! are equivalent

to

\2

4
dC1KI¹V2¹VKI

50, I51,2.

Because of ~4.17!, Remark 4.6, these equations are equivalent to

\2

4 (
i

g ii~l1
i
2l1

j !~] i
2G j2G i] iG j!1l1

j ] jV2] jVK1
50,

~5.20!

\2

4 (
i

g ii~l2
i
2l2

j !~] i
2G j2G i] iG j!1l2

j ] jV2] jVK2
50.

As we have done above, if we multiply the first equation by l2
j Þ0, the second one by l1

j Þ0 and

subtract the two resulting equations, then we get ~5.18!, which is equivalent to the first equation

~5.15!. For l2
j
50, Eq. ~5.18! follows from the first equation ~5.20! multiplied by l1

j Þ0. For l1
j

5l2
j
50, ~5.18! is obviously satisfied. j

Now we are able to prove Theorem 3.1 by applying the preceding results to the space H

5(K,V) of the first integrals in involution associated with the orthogonal separation of the

Hamilton–Jacobi equation ~Sec. III!. First, we prove the equivalence of the first three conditions

~3.3!.
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Proposition 5.10: Let H5(K,V) be the space of quadratic first integrals in involution asso-

ciated with the orthogonal separation of the Hamilton–Jacobi equation. Then the following con-

ditions are equivalent:

@ĤK ,Ĥ#50, ;KPK,

d~KR2RK!50, ;KPK, ~5.21!

] iR i j2G iR i j50, ~ iÞ j n.s.!.

Proof: Let us use Theorem 5.6. Since $HK ,H%50, the first equation ~5.21!, coinciding with

the first equation ~5.10!, is equivalent to dC50 for C5KD2DK and D i j5] iG j . However, since

the components D ii are not involved in this definition of C ~Remark 4.4!, we can replace D with
2
3 R, in agreement with ~5.14!. This proves the equivalence of the first two conditions ~5.21!. From

the equivalence ~4.18! it follows that the coordinate expression of the second equation ~5.21! is

(
i

g ii~l i
2l j!~] iR i j2G iR i j!50, ~5.22!

where only the nondiagonal covariant components of R are involved. If we introduce the vectors

Xj5~X j
i !5~g ii~] iR i j2G iR i j!!, Yj5~Y j

i !5~l i
2l j!,

then equation ~5.22! can be written

Xj•Yj50. ~5.23!

Let us consider a basis (Ka)5(Ka
ii)5(la

i g ii) of K, a51,...,n , with Kn5G. We have

det@la
i #Þ0 and ln

i
51. Let us chose a value of the index j, say j51. Then the n21 vectors Y1a

5(la
i
2la

1), a51,2,...,n21, are independent vectors in the (n21)-space P1 orthogonal to the

vector ~1, 0,..., 0!. Indeed, the rank of the n3(n21) matrix @la
i
2la

1# is maximal. According to

the second equation ~5.21!, Eq. ~5.23! must be satisfied by all these vectors:

X1•Y1a50.

This means that X1 is orthogonal to P1 , i.e., that X1
i
50 for iÞ1. In a similar way we prove that

X j
i
50 for jÞi . Thus, the second equation ~5.21! implies the third one. The converse is obvious.j

Proposition 5.11: Let H5(K,V) be the space of quadratic first integrals in involution asso-

ciated with the orthogonal separation of the Hamilton–Jacobi equation. Then the following con-

ditions are equivalent,

@ĤK1
,ĤK2

#50, ;K1 ,K2 ,PK,

d~K1RK22K2RK1!50, ;K1 ,K2 ,PK, ~5.24!

] iR i j2G iR i j50, iÞ j .

Proof: The first condition is equivalent to dC50, because of the second equivalence ~5.15!
~Theorem 5.8!, with C defined in ~5.16!. However, in definition ~5.16! D can be replaced by R,

due to ~5.14! and Remark 4.4~ii!. Thus, the first two conditions ~5.24! are equivalent. The second

equation ~5.24! implies the second equation ~5.21!, since GPK, and the last equation ~5.24!
because of Proposition 5.10. The last condition ~5.24! implies the second condition ~5.24! because

of ~4.16!. j

The last condition ~5.24! appears also in ~5.21!. Thus, all the conditions ~5.24! and ~5.21! are

equivalent. This proves Theorem 3.1.
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VI. SYMMETRY OPERATORS ASSOCIATED WITH THE GENERAL SEPARATION OF
THE HAMILTON–JACOBI EQUATION

A separable Killing algebra1 is a pair (D ,K) where D is an r-dimensional linear space of

commuting Killing vectors and K is a D-invariant (n2r)-dimensional linear space of Killing

two-tensors with m5n2r normal eigenvectors orthogonal to D. These eigenvectors are called

essential eigenvectors. The eigenvalues of a KPK corresponding to essential eigenvectors are

called essential eigenvalues. It can be proved that: ~i! D is normal, i.e., the distribution D'

orthogonal to the vectors of D is completely integrable, ~ii! K contains the metric tensor G and

Killing tensors with distinct essential eigenvalues ~called characteristic Killing tensors!; ~iii! all

functions PX and PK , with XPD and KPK are in involution; ~iv! there exist standard coordi-

nates (qa,qa) such that dqa are eigenforms of K corresponding to the essential eigenvectors and

]a form a local basis of D, so that (qa) are ignorable; ~v! these coordinates are separable for the

geodesic flow; ~vi! in these coordinates all elements of K assume the standard form

K5Kaa]a ^ ]a1Kab]a ^ ]b5lagaa]a ^ ]a1Kab]a ^ ]b , ~6.1!

where la are the essential eigenvalues of K and the coordinates (qa) are ignorable; ~vii! the

natural Hamiltonian H5
1
2PG1V is separable if and only if there exists a separable Killing algebra

such that DV50 and the characteristic equation d(KdV)50 is satisfied for a single characteristic

Killing tensor of K. It follows that ~viii! the characteristic equation is satisfied for all KPK and

that there are local D-invariant functions VK such that dVK5KdV , i.e.,

¹VK5K¹V , DVK50;

~ix! the functions

PX , XPD ,

HK5
1
2PK1VK , KPK

are first integrals in involution. We denote by

H5~K,V !

the m-dimensional linear space of the quadratic first integrals HK .

For the first- and second-order operators corresponding to these first integrals in involution the

commutation relations

@ P̂X1
, P̂X2

#50, @ P̂X ,ĤK#50, ;X1 ,X2 ,XPD , ;KPK,

hold. This follows from the fact that XPD are commuting Killing vectors and the elements of H

are D-invariant. However, in general the operators ĤK do not commute one other. Indeed, we have

a theorem similar to Theorem 3.1,

Theorem 6.1: Let H5(K,V) be the space of quadratic first integrals in involution associated

with the separation of the Hamilton–Jacobi equation. Then the following conditions are equiva-

lent:

@ĤK ,Ĥ#50, ;KPK, ~6.2a!

d~KR2RK!50, ;KPK, ~6.2b!

]aRab2GaRab50, aÞb n.s., ~6.2c!

@ĤK1
,ĤK2

#50, ;K1 ,K2 ,PK, ~6.2d!
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d~K1RK22K2RK1!50, ;K1 ,K2 ,PK, ~6.2e!

where Rab5R(]a ,]b) are the essential covariant components of the Ricci tensor R ~correspond-

ing to essential separable coordinates (qa)) and Ga5g i jG i j ,a are the essential contracted Christ-

offel symbols.

The proof of this theorem will be given in Sec. VIII.

Remark 6.2: Formulas ~6.2! are formally identical to formulas ~3.3! concerning the orthogonal

separation, and a remark similar to Remark 3.2 also holds in the present case. The only difference

is that now the coordinate expression of the pre-Robertson condition ~6.2c! involves only the

essential components Rab of the Ricci tensor. In standard separable coordinates the Ricci tensor R

assume the form ~cf. Ref. 1, Sec. VI!

R5Rab]a ^ ]b1Rab]a ^ ]b , ~6.3!

and moreover,

]aGb5
2
3Rab , aÞb . ~6.4!

It assumes the standard form, i.e.,

Rab50, aÞb , ~6.5!

if and only if the Schrödinger equation is separable in the reduced sense ~Robertson condition!.
The Robertson condition ~6.5! obviously implies the pre-Robertson condition ~6.3!. Hence,

Theorem 6.3: If the Schrödinger equation associated with a separable Hamiltonian is reduc-

tively separable, then all operators P̂X and ĤK corresponding to the linear and quadratic first

integrals in involution commute.

In particular they commute with the Schrödinger operator Ĥ5ĤG . The Robertson and pre-

Robertson conditions are obviously satisfied for R5kG. Hence,

Theorem 6.4: On Einstein manifolds all operators P̂X and ĤK corresponding to the first

integrals in involution of a separable Hamiltonian system commute.

Remark 6.5: An algebraic form of the Robertson condition is expressed by the commutability

of the Ricci tensor R with a characteristic tensor ~thus, with all the Killing tensors! KPK,

interpreted as linear operators, when restricted to the distribution D' orthogonal to D,

~KR2RK!uD'
50, ;KPK. ~6.6!

Indeed, this distribution is invariant with respect to these linear operators. If we denote by R8 and

K8 the restrictions to D', cf. ~7.1!, then ~6.6! is equivalent to

K8R2RK850, ~6.7!

or to KR82R8K5K8R82R8K850. Condition ~6.7! obviously implies

d~K8R2RK8!50. ~6.8!

As we shall see in Sec. VIII, the fact that ~6.8! is equivalent to ~6.2b! is remarkable.

Remark 6.6: In standard separable coordinates the components of the elements of K and the

potential functions assume the form

gaa
5w ~m !

a
, gab

5fa
ab~qa!w ~m !

a
, V5fa~qa!w ~m !

a
,

Kb
aa

5w ~b !
a

, Kb
ab

5fa
ab~qa!w ~b !

a
, VKb

5fa~qa!w ~b !
a

,

where (Kb) is a local basis of K, with Km5G. Then, a local basis of H is
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Hb5
1
2w ~b !

a
~pa

2
1fa

abpapb12fa!.

The corresponding operators assume the form ~see Remark 8.2 and Ref. 1, Sec. V!.

Ĥbc̃52
\2

2
w ~b !

a S ]a
2c̃2Ga]ac̃1S fa

abkakb2
2

\2 faD c̃ D ,

where c5c̃•Paekaqa
, c̃5Paca(qa). The Robertson condition in standard separable coordinates

is equivalent to ]bGa50 for aÞb . This means that Ga5Ga(qa).

VII. KILLING TENSORS IN STANDARD FORM

In the next section we shall analyze the commutation relations of the second-order operators

assuming that all the tensors K involved, including the metric tensor G, are simultaneously in

standard form ~6.1! with respect to a given standard coordinate system (q i)5(qa,qa). We shall

use the decomposition

K5K81K9,

K85Kaa]a ^ ]a5lagaa]a ^ ]a , ~7.1!

K95Kab]a ^ ]b .

In analogy with Sec. IV, in this section we state some general properties concerning Killing

tensors. For a Killing tensor in standard form the following equations hold:

]alb
5~la

2lb!]a ln gbb

]aKab
5la]agab

]ala
50

]a~lbgbb!5la]agbb

]a
2~lbgbb!5la]a

2gbb

]a
2Kab

5la]a
2gab

~a ,b n.s.!. ~7.2!

We call the two first equations ~7.2! the extended Eisenhart–Killing equations. They characterize

the Killing tensors in standard form and imply the remaining equations.

Proposition 7.1: If (qa,qa) are standard coordinates in which a Killing tensor K assumes the

standard form (6.1), then

~la
2lb!~]aGb2]bGa!50 ~a ,b n.s.!. ~7.3!

Proof: The proof follows the same pattern of the proof of Proposition 4.1. The only difference

is that ~4.3! is replaced by ~cf. Ref. 1, Sec. VI!

Ga5
1
2]a(

c
ln gcc

2]a ln gaa
1

1
2]a ln det@gab# ,

but the last term does not give any contribution to the difference ]aGb2]bGa . j

In a similar way we can prove

Proposition 7.2: Let KI , I51,2, be two Killing tensors in standard form (6.1). Then
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~l1
al2

b
2l2

al1
b!~]aGb2]bGa!50 ~aÞb n.s.!. ~7.4!

Proposition 7.3: Let KI , I51,2, be two Killing tensors in standard form (6.1). If

C5K18DK282K28DK18 , C i j
5~K18! ihDhk~K28!k j

2~K28! ihDhk~K18!k j, ~7.5!

where D5(D i j) is a geometrical object, then

Cab
5gaagbb~l1

al2
b
2l2

al1
b!Dab , Caa

5Caa
5Cab

50,

~7.6!
Cb

a
5C

•b
a

5gaa~l1
al2

b
2l2

al1
b!Dab , Ca

a
5Ca

a
5Ca

b
50,

and

¹iCa
i
50, ¹iCb

i
5(

a
gaa~l1

al2
b
2l2

al1
b!~]aDab2GaDab1

1
2]a ln gbb~Dba2Dab!!. ~7.7!

Proof: Equations ~7.6! are a direct consequence of definitions ~7.5! and ~7.1!. In standard

coordinates ~cf. Ref. 1, Sec. VI!

G ia
i

50, G ia
i

52
1
2]a~ ln det@g i j# !52]a ln gaa

2Ga , ~7.8!

and formula ~4.11! reduces to

¹iC j
i
5]aC j

a
1G ia

i C j
a
2G i j

h Ch
i .

It follows that ¹iCa
i
50 and

¹iCb
i
5]aCb

a
2~Ga1]a ln gaa!Cb

a
2Gab

c Cc
a .

The development of this last expression follows the same pattern of the proof of Proposition 4.3.j

Remark 7.4: From ~7.6! it follows that: ~i! C ii
50, ~ii! only the nondiagonal components Dab ,

aÞb , are involved in the definition ~7.5! of C, ~iii! if the essential components of D are symmet-

ric, Dab5Dba , then C is skew-symmetric.

Remark 7.5: Let us apply Proposition 7.3 to the cases D i j5] iG j . In standard coordinates

Ga50 and ]aGa50. Thus, Dab5Daa5Daa50 and C defined in ~7.5! is equal to

C5K1DK22K2DK1 , D5~] iG j!.

Equations ~7.6! hold with Dab replaced by ]aGb ,

Cab
5gaagbb~l1

al2
b
2l2

al1
b!]aGb , Cb

a
5gaa~l1

al2
b
2l2

al1
b!]aGb , ~7.9!

and, due to ~7.4!, equations ~7.7! become

¹iCa
i
50, ¹iCb

i
5(

a
gaa~l1

al2
b
2l2

al1
b!~]a

2Gb2Ga]aGb!. ~7.10!

From ~7.4! and ~7.9! it follows that C i j
1C j i

50. Hence, C is skew-symmetric and ~7.10! give the

components of dC. Thus,

dC50⇔(
a

gaa~l1
al2

b
2l2

al1
b!~]a

2Gb2Ga]aGb!50.

Remark 7.6: For K25G and K15K, definition ~7.5! and equations ~7.6! become
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C5K8D2DK8, Cab
5gaagbb~la

2lb!Dab , Cb
a
5gaa~la

2lb!Dab , ~7.11!

the remaining components being identically zero. Equations ~7.7! become

¹iCa
i
50, ¹iCb

i
5(

a
gaa~la

2lb!~]aDab2GaDab1
1
2]a ln gbb~Dba2Dab!!.

For D i j5] iG j the definition ~7.11! is equivalent to

C5KD2DK

and

¹iCa
i
50, ¹iCb

i
5(

a
gaa~la

2lb!~]a
2Gb2Ga]aGb!. ~7.12!

C is skew-symmetric and ~7.12! give the components of dC. Thus,

dC50 ⇔ (
a

gaa~la
2lb!~]a

2Gb2Ga]aGb!50. ~7.13!

Remarks and propositions similar to Remarks 4.6, 4.7, 4.13, 4.14 and Propositions 4.8–12 hold in

the present case, with obvious modifications.

VIII. COMMUTATION RELATIONS IN STANDARD COORDINATES

Proposition 8.1: If K is a symmetric tensor in standard form (6.1), then the corresponding

pseudo-Laplacian assumes the form

DKc5Aa]a
2c1Ba]ac1Kab]a]bc ,

Aa
5Kaa

5lagaa, ~8.1!

Ba
5gaa~]ala

2laGa!.

Proof:

DKc5] i~K i j] jc !1G ih
i Kh j] jc5] iK

i j] jc1K i j] i] jc1G ia
i Ka j] jc

5]aKaa]ac1Kaa]a
2c1Kab]a]bc1G ia

i Kaa]ac .

Then ~8.1! follow from ~7.8! and Kaa
5lagaa. j

Remark 8.2: For a pseudo-Laplacian we use the decomposition

DK5D
K
8 1D

K
9 ,

D
K
8 c5Aa]a

2c1Ba]ac5gaa~la]a
2c1~]ala

2laGa!]ac !,

D
K
9 c5Kab]a]bc .

Note that, in accordance with the decomposition ~7.1!, we have

D
K
8 5DK8

.

For a Killing tensor,
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D
K
8 5lagaa~]a

2c2Ga]ac !.

For a second-order operator ~2.12! we use the decomposition

ĤK5Ĥ
K
8 1Ĥ

K
9 , Ĥ

K
8 52

\2

2
D

K
8 1VK , Ĥ

K
9 52

\2

2
D

K
9 ,

so that

ĤKc52
\2

2
~D

K
8 1D

K
9 !c1VKc

52
\2

2
~Aa]a

2c1Ba]ac1Kab]a]bc !1VKc

52
\2

2
@gaa~la]a

2c1~]ala
2laGa!]ac !1Kab]a]bc#1VKc . ~8.2!

For a Killing tensor,

ĤKc52
\2

2
@lagaa~]a

2c2Ga]ac !1Kab]a]bc#1VKc .

In all the above-given expressions the coordinates (qa) are ignorable.

Proposition 8.3: The commutator of two second-order operators of the kind (8.2) has the

following expression:

@ĤK1
,ĤK2

#c5@Ĥ
K1
8 ,Ĥ

K2
8 #c1

\4

2
~A1

a]a
2K2

ab
2A2

a]a
2K1

ab
1B1

a]aK2
ab

2B2
a]aK1

ab!]abc

1\4~A1
a]aK2

ab
2A2

a]aK1
ab!]a]a]bc , ~8.3!

where

@Ĥ
K1
8 ,Ĥ

K2
8 #c5

\4

4
@D

K1
8 ,D

K2
8 #c2\2~A1

a]aVK2
2A2

a]aVK1
!]ac2

\2

2
~D

K1
8 VK2

2D
K2
8 VK1

!c .

~8.4!

Proof: Since

D
K1
8 D

K2
8 c5A1

b]b
2~A2

a]a
2c1B2

a]ac !1B1
b]b~A2

a]a
2c1B2

a]ac !

5A1
bA2

a]b
2]a

2c1A1
b]b

2A2
a]a

2c12A1
b]bA2

a]b]a
2c1A1

b]b
2B2

a]ac1A1
bB2

a]b
2]ac

12A1
b]bB2

a]a]bc1B1
bA2

a]b]a
2c1B1

b]bA2
a]a

2c1B1
bB2

a]b]ac1B1
b]bB2

a]ac ,

we have

@D
K1
8 ,D

K2
8 #52~A1

a]aA2
b
2A2

a]aA1
b!]a]b

2c1~A1
a]a

2A2
b
2A2

a]a
2A1

b
1B1

a]aA2
b
2B2

a]aA1
b!]b

2c

12~A1
a]aB2

b
2A2

a]aB1
b!]a]bc1~A1

a]a
2B2

b
1B1

a]aB2
b
2A2

a]a
2B1

b
2B2

a]aB1
b!]bc .

Since

D
K1
9 ,D

K2
9 c5K1

abK2
mn]abmnc ,
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we have

@D
K1
9 ,D

K2
9 #50, @Ĥ

K1
9 ,Ĥ

K2
9 #50.

Thus,

@ĤK1
,ĤK2

#5@Ĥ
K1
8 ,Ĥ

K2
8 #1@Ĥ

K1
8 ,Ĥ

K2
9 #1@Ĥ

K1
9 ,Ĥ

K2
8 # .

A straightforward calculation shows that

@Ĥ
K1
8 ,Ĥ

K2
8 #c5

\4

2
~A1

a]a
2K2

ab
1B1

a]aK2
ab!]a]bc1\4A1

a]aK2
ab]a]a]bc .

These two last equations prove ~8.3! and ~8.4!. j

Proposition 8.4: Let K1 and K2 be symmetric tensors in standard form. Then @ĤK1
,ĤK2

#

50 if and only if

A1
a]aA2

b
2A2

a]aA1
b
50 ~a , n.s.!, ~8.5a!

(
a

~A1
a]a

2A2
b
2A2

a]a
2A1

b
1B1

a]aA2
b
2B2

a]aA1
b!12~A1

b]bB2
b
2A2

b]bB1
b!50, ~8.5b!

A1
a]aB2

b
2A2

a]aB1
b
1A1

b]bB2
a
2A2

b]bB1
a
50 ~aÞb n.s.!, ~8.5c!

\2

4 (
a

~A1
a]a

2B2
b
1B1

a]aB2
b
2A2

a]a
2B1

b
2B2

a]aB1
b!2A1

b]bVK2
1A2

b]bVK1
50 ~b n.s.!,

~8.5d!

D
K1
8 VK2

2D
K2
8 VK1

50, ~8.5e!

and

A1
a]a

2K2
ab

2A2
a]a

2K1
ab

1B1
a]aK2

ab
2B2

a]aK1
ab

50, ~8.6a!

A1
a]aK2

ab
2A2

a]aK1
ab

50. ~8.6b!

Proof: Equations ~8.6! follow from the second and third term in ~8.3! i.e., from the vanishing

of the coefficients of ]a]bc and of ]a]a]bc . The first term ~8.3! involves only the partial

derivatives ]a and a factor of c, and it is similar ~with an obvious change of indices! to ~5.3!.
Thus, ~8.5! are similar to ~5.5!.

Remark 8.5: Since,

$PK1
,PK2

%52~A1
a]1

aA2
b
2A2

a]aA1
b!papb

2
12~A1

a]aK2
ab

2A2
a]aK1

ab!papapb , ~8.7!

Eqs. ~8.5a! and ~8.6a! are equivalent to $PK1
,PK2

%50. Thus,

@ĤK1
,ĤK2

#50 ⇒ $PK1
,PK2

%50. ~8.8!

Theorem 8.6: Let K be a symmetric tensor in standard form. Then the following conditions

are equivalent:
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@ĤK ,Ĥ#50 ⇔

$PK ,PG%50 ~K Killing tensor!,

\2

4
dC1K¹V2¹VK50

⇔ $HK ,H%52
\2

4
PdC , ~8.9!

where

C5KD2DK5K8D2DK8, D5~] iG j!. ~8.10!

Proof: The equivalence of the two definitions ~8.10! of C follows from Remarks 7.5 and 7.6.

We use ~8.5!, Proposition 8.4, for K15K and K25G. Assume @ĤK ,Ĥ#50. From ~8.8! it follows

that K is a Killing tensor. For a Killing tensor in standard form we have formulas similar to ~5.11!
and ~5.12!, with indices ~a,b!. Equations ~8.5a, b! and ~8.6b! are then identically satisfied. The

remaining equations are similar to ~5.13!,

~la
2lb!~]aGb2]bGa!50,

\2

4 (
a

gaa~la
2lb!~]a

2Gb2Ga]aGb!1lb]bV2]bVK50 ~b n.s.!, ~8.11!

d~K¹V2¹VK!50.

Due to ~7.3!, the first equation is identically satisfied. According to Remark 7.6 and Eq. ~7.12!,
the second equation ~8.11! is equivalent to

\2

4
dC1K¹V2¹VK50,

where C is skew-symmetric. Since d2
C50, the last equation ~8.11! is a consequence of the second

equation ~8.11!. The above-noted reasoning is reversible, and the first equivalence ~8.9! is proved.

The second equivalence follows from the last equation ~2.3!. j

Theorem 8.7: Let K1 and K2 be Killing tensors in standard form. Then $PK1
,PK2

%50, and

the following conditions are equivalent:

@ĤK1
,ĤK2

#50 ⇔

\2

4
dC1K1¹VK2

2K2¹VK1
50 ⇔ $HK1

,HK2
%52

\2

4
PdC , ~8.12!

where

C5K1DK22K2DK15K18DK282K28DK18 , D5~] iG j!. ~8.13!

Proof: The equivalence of the two definitions of C in ~8.13! follows from Remark 7.5. The

components of C are given in ~7.9!. The involutivity condition $PK1
,PK2

%50 follow from ~8.7!,

~8.5a!, ~8.6b!, and ~7.2!. We use Eqs. ~8.5! and ~8.6!. For Killing tensors KI (I51,2) in standard

form we have, cf. ~8.1! and ~7.2!,

A1
a
5l I

agaa, B I
a
52gaal I

aGa ,

]aK I
ab

5l I
a]agab, ]a

2Kab
5l I

a]a
2gab.

Thus, ~8.6! are identically satisfied. Moreover, formulas similar to ~5.17! hold with indices (a ,b),
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A I
a
5l I

agaa, B I
a
52A I

aGa ,

]aA I
b
5A I

a]agbb
5l I

a]agbb,

]a
2A I

b
5A I

a]a
2gbb

5l I
a]a

2gbb,

]aB I
b
52]a~A I

bGb!52]aA I
bGb2A I

b]aGb ,

]a
2B I

b
52]a

2A I
bGb22]aA I

b]aGb2A I
b]a

2Gb .

Since the coordinates qa are ignorable and no greek index is involved in ~8.5! the proof of the first

equivalence ~8.12! is similar to that of the first equivalence ~5.15! in Theorem 5.8. The second

equivalence ~8.12! follows from the first equation ~2.3! ~cf. the end of the proof of Theorem

5.8!. j

Proposition 8.8: Let K1 and K2 be Killing tensors in standard form. Then

@ĤK1
,Ĥ#50, @ĤK2

,Ĥ#50 ⇒ @ĤK1
,ĤK2

#50.

Proof: This implication is similar to ~5.19! of Proposition 5.9. The proof follows the same

pattern. j

Propositions similar to Propositions 5.10 and 5.11 hold.

Proposition 8.9: Let H5(K,V) be the space of quadratic first integrals in involution associ-

ated with the separation of the Hamilton–Jacobi equation. Then the following conditions are

equivalent:

@ĤK ,Ĥ#50, ;KPK,

d~K8R2RK8!50, ;KPK, ~8.14!

]aRab2GaRab50, ~aÞb n.s.!.

Proof: We apply the equivalence of the first and last conditions ~8.9! in Theorem 8.6. Since

HK are first integrals, the commutation relation @ĤK ,Ĥ#50 is equivalent to dC50 with C

5KD2DK5K8D2DK8 and D5(] iG j). If we consider C5K8D2DK8 then only the compo-

nents Dab5]aGb with aÞb are involved and, since the coordinates are separable, we can replace

D by 2
3R, because of ~8.13! and ~6.4!. This proves the equivalence of the first two conditions

~8.14!. On the other hand, due to Remark 7.5 and ~6.4!, in the equivalence ~7.13! we can replace

]aGb by Rab , since only the indices aÞb are involved. This proves the equivalence between

dC50 and the last condition ~8.14!. j

Proposition 8.10: Let H5(K,V) be the space of quadratic first integrals in involution asso-

ciated with the separation of the Hamilton–Jacobi equation. Then the following conditions are

equivalent:

@ĤK1
,ĤK2

#50, ;K1 ,K2 ,PK,

d~K18RK282K28RK18!50, ;K1 ,K2 ,PK, ~8.15!

]aRab2GaRab50, aÞb .

The proof is similar to that of Proposition 5.11. The last condition ~8.15! also appears in ~8.14!.
Thus all these conditions are equivalent. For proving Theorem 6.1 it remains to prove that

d~K8R2RK8!5d~KR2RK! ~8.16!
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and

d~K18RK282K28RK18!5d~K1RK22K2RK1!. ~8.17!

These equalities can be proved by the following general considerations on the tensors in prestan-

dard form. We say that a contravariant two-tensor T5(T i j) has a prestandard form with respect to

a standard coordinate system (q i)5(qa,qa) if Taa
5Taa

50 and all the remaining components do

not depend on the ignorable coordinates (qa).

Proposition 8.11: For a tensor in prestandard form ¹iT
ia

50.

Proof: Since (qa) are ignorable, ] iT
ia

5]aTaa
50 and we have

¹iT
ia

5] iT
ia

1G il
i T la

1G il
aT il

5G ib
i Tba

1G il
aT il.

However, in standard coordinates G ib
i

50 and G il
a are all vanishing except for (i ,l)5(a ,b) or

(b ,a). j

Proposition 8.12: If T1 and T2 are in prestandard form, then also the commutator C

5T1T22T2T1 is in prestandard form.

Proof: By definition of commutator,

C i j
5T1

ilg lmT2
m j

2T2
ilg lmT1

m j
5T1

icgcdT2
d j

1T1
imgmnT2

n j
2T2

icgcdT1
d j

2T2
imgmnT1

n j ,

so that

Cab
5T1

acgcdT2
db

2T2
acgcdT1

db
5T1

acgccT2
cb

2T2
acgccT1

cb ,

Caa
5Caa

50, ~8.18!

Cab
5T1

amgmnT2
nb

2T2
amgmnT1

nb .

j

For a tensor in a prestandard form let us use the decomposition

T5T81T95Tab]a ^ ]b1Tab]a ^ ]b .

By setting T1
ab

50 or T2
ab

50 in ~8.18! we get

T18T22T2T185T1T282T28T15T18T282T28T185C8.

Proposition 8.13: If C is a skew-symmetric tensor in prestandard form then dC5dC8.

Proof: Since also C8 is in prestandard form, due to Proposition 8.11 we have ¹iC
ia

5¹iC8
ia

50. Moreover, ¹iC
ia

5] iC
ia

1G il
i C la

1G il
a C il

5]bCba
1G ib

i Cba, since G ia
i

50, G il
a

5G li
a

and C il
52C li. In this last expression the components Cab are not involved. Thus, ¹iC

ia

5¹iC8
ia. j

Proposition 8.14: If T1 and T2 are symmetric tensors in prestandard form, then

d~T18T22T2T18!5d~T1T22T2T1!.

Proof: The commutator C5T1T22T2T1 is skew-symmetric and in prestandard form ~Propo-

sition 8.12!. The same for T18T22T2T185C8. Then we apply Proposition 8.13. j

For T15K ~which is in standard form! and T25R ~which is in prestandard form! we get

~8.16!.
Proposition 8.15: If T, T1 , and T2 are symmetric tensors in prestandard form, then

d~T18TT282T28TT18!5d~T1TT22T2TT1!.

Proof: The components of C5T1TT22T2TT1 are
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C i j
5T1

ilT lmT2
m j

2T2
ilT lmT1

m j
5T1

icTcdT2
d j

1T1
imTmnT2

n j
2T2

icTcdT1
d j

2T2
imTmnT1

n j ,

so that

Cab
5T1

acTcdT2
db

2T2
acTcdT1

db ,

Caa
5Caa

50,

Cab
5T1

amTmnT2
nb

2T2
amTmnT1

nb .

This shows that C is skew-symmetric and in prestandard form. By setting T1
ab

5T2
ab

50 we get

Cab
50. This shows that T18TT282T28TT185C8. Then we apply Proposition 8.13. j

For T15K1 , T25K2 , and T5R we get ~8.17!. This completes the proof of Theorem 6.1.

IX. FINAL REMARKS

In this paper we have considered the symmetry operators corresponding to the separation of

the Schrödinger equation, but deeper and wider research on this topic still has to be done. Indeed,

we have not included here a revisitation of the R-separation, leading to a different development of

the separation of variables for both Schrödinger and Hamilton–Jacobi equations. This will be the

subject of a future paper. A further topic to be investigated is the link between the commutation

relations of second-order polynomial observables HK and the associated second-order operators

ĤK , for generic two-tensors K on Riemannian manifolds. This matter is concerned mainly with

integrability of systems with quadratic first integrals, and the separability appears only as a special

case.
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