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Proposal.

Even if we believe that the Universe is printed in a single copy we cannot hope
to set up a unique mathematical model capable to describe its evolution in time with
the desired accuracy. The complexity of the phenomena in the early universe and the
high number of observational parameters that can be involved make it impossible to
achieve that purpose.

Over the last century, several models have been proposed, modified and then
abandoned. The debate on the involvement of the cosmological constant is a striking
example of how opinions change following the astronomical discoveries. Another
example is the question about the spatial curvature, erroneously considered to be
zero by many cosmologists only because the processing of the observational data
leads to the conclusion that it is negligible. On the other hand, too many are the
models that nowadays are still proposed and analyzed, so that a certain confusion
has been created, especially because for most of them it is not clear on which general
principles (or postulates) they are founded.

The standard approaches to cosmology are based on Weyl’s principle and on the
cosmological principles of homogeneity and isotropy. But by following this shortcut
we lose the important occasion of being able to distinguish if a certain property has
a purely geometrical character or depends from the field equations.

The purpose of this monograph is to demonstrate how to bring order to this com-
plex subject, starting from ‘principles’ or ‘postulates’ declared in understandable
mathematical terms. Once subscribed, these postulates open the way to a series of
theorems. If you do not agree on some of them, then you have to re-tune the postu-
lates or, in the extreme case, look for another approach.

This monograph is an improved and expanded English version of a Memoir
entitled Fondamenti matematici e analisi numerica della dinamica di un Universo
isotropo published by Accademia delle Scienze di Torino in the volume no. 42-43
(2018-2019). Much of the topics presented here has been collected in a volume with
the same title of the Springer Nature Publishing Series (2024).
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Preface

In the preface to his book A Deductive Theory of Space and Time (1966) [5] the
logician-mathematician S. Basri writes:

At present Physics is a collection of deductive theories, many of which do not
explicitly specify all the concepts and postulates on which they are based.”

This criticism is still valid today for cosmological theories, despite the fact that
cosmologists found, in the late 1990s, a cosmological agreement on a standard cos-
mological model called ACDM-model (Lambda model with cold dark matter). Un-
fortunately, however, a paper in which this agreement was written and signed seems
to be untraceable in the literature. It is like the Arabic Phoenix of Mozartian memory
in Cosi fan tutte: che ci sia ciascun lo dice, dove sia nessun lo sa.

It is on the other hand widely believed that the lack of a logical-deductive struc-
ture makes painful and fruitless the reading of most books or articles on cosmological
topics. So much so that someone has ironically spoken of ‘expanding Universe and
expanding confusion’.

This monograph sets out some of the main results obtained in the course of a
research project begun several years ago and aimed at satisfying a personal need: to
be able to trace back the most striking results in cosmology, sometimes controversial,
to a system of postulates clearly expressed in mathematical terms.

Two methodological principles have been adopted since the beginning of this
research: a principle of simplicity and a principle of good ordering.

Simplicity.

An all-encompassing mathematical model capable of describing the complex-

ity of phenomena that occurs during the evolution of the Universe, especially in its
primordial stages, is not conceivable by the human mind.

Therefore, we must moderate our ambitions, aiming for simple and meaningful
models that will enable us to enter the complex field of cosmology in a comprehen-
sible and fruitful way.
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On the other hand, as today we understand well thinking about the historical evo-
lution of geometry, that is, the transition from Euclidean geometry to non-Euclidean
geometries, postulates should not be conceived as absolute acts of faith. On the con-
trary, they must be questionable. The advantage of an axiomatic formulation of a
theory lies precisely in the possibility of identifying the postulates to be modified, or
added, in order to get a theory fitting a larger, or different, class of physical phenom-
ena.

Good ordering.

This principle concerns the proper sequencing of postulates and theorems. In
mathematics, this principle requires that postulates be placed initially in a general
category and later in a chain of subcategories. In cosmology, as well as in classical or
relativistic mechanics, the first postulates and theorems must deal with issues of pure
geometry and kinematics. These must then be followed by postulates of a dynamical
nature.

In compliance with this principle, the postulates are in this memoir divided into
three groups.

1. The first group of postulates concerns the geometry of cosmic space-time
(Chapter 1) regardless of the physical phenomenology governing the evolution of the
Universe. As will be seen, although based on shareable elementary concepts, these
postulates yield a conspicuous mass of results, some known but many others less
well known.

Among the most interesting novelties we find that the scale factor, also called
expansion factor, which is the conformal factor between two spatial metrics of the
Universe at two different times, turns out to depend on the choice of a reference time
denoted here as t;. This notion is not only of theoretical interest but also provides a
very useful and effective operational tool. Indeed, the scale factor is a dimensionless
scalar function of cosmic time 7, usually denoted by a(t), from which the evolution
of most of the physical quantities in the Universe, and thus the evolution of the entire
Universe, can be described qualitatively and in some cases also numerically.

Here it will be denoted by a(t,#;) to indicate its dependence on the reference time
ty. Itis clear that, to make geometrical or physical sense, the equations or definitions
involving it, possibly together with its derivatives, must be independent of the choice
of t;. A simple example is given by the Hubble factor that is involved in the famous
Hubble law and that in our context is defined by

a(t,t)

Ca(tt)

Despite the fact that the reference time #; appears in the right-hand side, calculations
show that the fraction is actually independent of it, so #; need not appear in the left-
hand side.

Perhaps this is why cosmologists did not feel the need to introduce the notion
of reference time, partly because in the current common notation a(t) it is tacitly
assumed that #; is the present time f,, so that a(t)) = 1.
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A second novelty is the theorem of existence in cosmic space-time of symmetric
linear connections, that we call cosmic connections, satisfying certain compatibil-
ity requirements with the geometrical structures already present in space-time as a
consequence of the first set of postulates.

Connections are a necessary prelude to the formulation of dynamical theories
because they allow for the extension of the notions of acceleration and derivative
of vector fields from affine spaces to differentiable manifolds.

It is shown, a remarkable fact, that every cosmic connection turns out to be de-
termined by a single function of cosmic time 7, denoted here by F(¢).

2. The second group of bridge-postulates (Chapter 2) concerns the transition
from geometry to dynamics. With the choice of a bridge-postulate one moves into
the territory of dynamics where, in order to continue on the path, it is necessary to
introduce dynamic postulates (the third group of postulates). A bridge-postulate is
acceptable and effective if it allows to determine a single function F'(¢), thus a single
cosmic connection.

OTHER
DOMINION OF COSMOLOGIES? 6 DOMINION OF
NEWTONIAN WHY NOT! @ RELATIVISTIC
COSMOLOGY : COSMOLOGY

here we turn right

Hubble law
7 A Reference metric
Scale factor | X

DOMINION OF ) Reference space

CosMIC SPACE-TIME
GEOMETRY

| Cosmic connections |

Departure
Postulates

AL 1A vz

Fig. 0.1. Our cosmic route.
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Two bridge-postulates are proposed in Chapter 2. The first one leads to Newto-
nian cosmological models, but after a brief discussion, we do not continue further in
this direction. Instead, the second one leads to the dominion of relativistic cosmolog-
ical models. It assumes the existence of a cosmic time ¢ and of special wandering
particles whose peculiar velocity (§2.2) is always and everywhere equal to a uni-
versal constant c. These particles are given the name photons. From this postulate
it follows not only the existence of a special cosmic connection but also that this
derives from a Lorentzian metric (i.e. it is a Levi-Civita connection) for which the
world-lines of photons are null (light-like) while the world-lines of the galactic fluid
are time-like. As a consequence we find, as a theorem, the Weyl principle (§1.3).

3. With this last bridge-postulate, one moves to the relativistic cosmic dynamics
(Chapter 3) based on three dynamical postulates.

3.1. With the first relativistic dynamical postulate we assume the Einstein
equations as field equations. Already in Chapter 2, the ingredients needed to compose
these equations were prepared, namely the Ricci R*B_ and Einstein G*P | tensors as-
sociated with the relativistic cosmic connection (§2.5).

But even earlier, in Chapter 1, it was seen that, by virtue of the principle of
isotropy, every symmetric two-tensor T%B turns out to be completely determined by
only two characteristic functions ¢ () and y(¢) of the cosmic time, and it is shown
that the four conservation equations VoI =0 reduce to a single ordinary first-
order differential equation in the functions ¢ and y, whatever the cosmic connection.

By virtue of this general property, it is shown (Theorem 3.1) that Einstein’s ten
equations are in fact equivalent to only two differential equations (of first and second
order) in the scale factor a(t,#;) involving the two characteristic functions ¢ and y
of the energy tensor, the cosmological constant A and the spatial curvature constant
K at the reference time t.

These dynamical equations are similar to the celebrated Friedmann-Lemaitre-
Robertson equations, but, unlike these, our equations are valid in all generality for
any kind of energy tensor. In this regard, it was deemed appropriate to carry out
a detailed examination of the Friedmann and Lemaitre equations (§3.4) in order to
solve some interpretation issues.

3.2. With the second relativistic dynamical postulate (§3.2) the energy tensor
of the cosmic fluid is assumed to be that of a perfect fluid:

T =2 (e+p) VOVP 4 pg®P

where V% is the absolute velocity of the cosmic fluid, for which the normalization
condition gop V¥ VB = — 2 applies, £(t) is the energy density and p(r) is the pres-
sure. It is then shown that the characteristic functions are given by

o=e@), y=a>(t)p)

3.3. Finally, a third relativistic dynamical postulate (§3.3) concerns the equa-
tions of state i.e., the kinds of functions &(¢) and p(¢) and the relationships to be
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prescribed for them. The total energy density £(¢) is viewed as the sum of the energy
densities &;(¢) of various components of the cosmic fluid related to the correspond-
ing pressures p; by the simple linear relations p; = w; & where w; are dimension-
less constants called the bf parameters of state. Hence, on this postulate, possibly
implemented, one can base the so-called many-component cosmological models.
However, these models are unreliable, partly because of their complexity.

4. At this point the principle of simplicity induces us to take into account the two
fundamental types of energy distributed in the Universe: matter energy and radiation
energy, although it is customary to add a third one, that of dark energy, to which,
however, we shall give here a distinguished role.

This choice is formalized in a fourth postulate (§3.5): the energy density €
present in the Universe is the sum

E=&,+ &

of a matter energy density and a radiation energy density with two distinct char-
acteristic properties. The density &, does not generate pressure

and is itself the sum

&, =€+ &

of an energy density of baryonic matter and of an energy density of cold dark
matter whose nature is so far rather unknown. Instead, the radiation density €, gen-
erates a pressure with equation of state

As a fifth postulate we assume that there exists an equaliztion time 7., (also called
balancing time) at which the energy densities of matter and radiation take the same
value:

Em (teq) = Sr(teq)

It should be emphasized that all these assumptions are supported by commonly ac-
cepted arguments reported in astrophysics texts.

5. On this basis we construct a cosmological model which we call the MR-model
(matter-radiation-model) to which almost all the rest of the work is devoted. This
model differs from the standard ACDM-model in that the dynamical equation gov-
erning the evolution of the scale factor a(t, ), with reference time the present time
to, can be reduced to the form (Theorem 3.6)
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72_1
] | a*=H? 1+.(2A(a2—1)+9m(a1—1+a )]
1+Zeq

where only four constants are involved:

H, current value of the Hubble factor,
Q4 dark energy parameter,
€, matter energy parameter,

Zeq Tedshift corresponding to time feq.

We will call them primary data. Of the four cosmological parameters that come into
play in the ACDM-model

- ) 5
def | C 3H0
dark energy, _QAng—OzA — A= 3 Q4
2 2
def 1 C 3H0
matter, € = 3 —5 X Emo = X Emo = C—Z'Qm’
z
2 2
.. def 1 C 3H0
radiation, Q, = 3 mxgm = Y E&o= - Q,,
Z
def
curvature, Qg = Q) —Q,,—1,

only Q4 and €, survive, while the remaining two, 2, and €2, are replaced by the
redshift zeq corresponding to the balancing time f.q between the matter and radiation
densities. This reduction is possible thanks to the fact that the existence of the equal-
ization time fq implies a linear relationship between the matter parameter and the
radiation parameter:
L
1+ Zeq '

A second non-negligible advantage of the MR-model is that the spatial curvature
parameter Qg does not enter the dynamical equation []|. This avoids falling into
the error of assuming that the curvature is null (flatness assumption) simply because
from observational data its value turns out to be extremely small. In fact, it is possible
to prove (Theorem 3.7) that regardless of the values of the primary data, in the MR-
model the spatial curvature cannot be zero.

r

6. The analysis of the dynamical equation [«] is made easy by the fact that it is a
Weierstrass equation, i.e., of the type

Indeed, such an equation offers three significant advantages.

(1) Even if one does not know how to integrate it, looking at the graph of the
Weierstrass function W () in the plane (x = a, y = ¢°) one can recognize the main
properties of the solutions a(t).
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(i1) The integral

SRR fvx(x)

gives the time ¢ at which the scale factor takes the value a, the upper bound of the
integration interval. Therefore, calculating these integrals for a dense sequence of
values of a, starting with a = 0, and reversing the tabulation of the function (a) so
obtained we get a pointwise profile of the Universe a(z, ) that starts from the origin
(0,0) and thus predicts the existence of the singularity « = 0 for r = 0, the so-called
big-bang. In particular, for a = 1 the integral [**] gives the age of the Universe:

The graphs in the (¢, a) plane of the solutions will be called profiles of the Universe.

(iii) With respect to the ordinary step by step numerical integration methods we
can better take under control the error in calculating ¢(a).

7. With Chapter 4 we begin the numerical analysis. It is first necessary to select
the primary data values to be fed in the dynamical equation [*]. The analysis of
the numerous data reports associated with the various spatial projects carried out in
recent years, briefly mentioned in Chapter 4.1, leads to consider sufficiently reliable
the estimates of the following primary data:

Table 0.1. Primary data for the MR-model.

H, | 70.0kms~'Mpc=! | Ligo [14]

H, | 67.74 kms~"Mpc—' | Planck [2]

Qp 0.6911 Planck [2]
Q, 0.3089 Planck [2]
Zeq 3371 Planck [2]

With these estimates it can be shown that according to the MR-model the spatial
curvature is positive (Theorem 4.1) and one can calculate its present values (§4.5)

Hy—| Ky~ 0.46885 %10 °Glyr—2| Hy+ | Ky~ 0.43907 x 10 °Glyr 2

together with the curvature radii

ﬁo — | 1o~ 1460.4299 Glyr| Hy | ry = 1509.1540 Glyr
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Regarding the Hubble constant H,, we take into account two estimates. The first,
denoted by Hy, is recently acquired and considered to be of high precision. It was
provided by the 2017 LIGO gravitational wave experiment. The second, denoted by
H,, dates back to the 2016 Planck project report.

The reason for this double choice is because the (square of the) Hubble constant
H, is a factor of the Weierstrass function in the dynamical equation [*] so that the
dynamics is significantly affected by even small changes in H,,.

This ‘sensitivity’ then propagates to all numerical data derived from W (a). For
example, for the age of the Universe we obtain the two estimates

Hy—| 1y~ 13.36116 Gyr| Hy—| t, ~ 13.80692 Gyr

Time ¢, is one of the four key-times 7, that we have to consider because the
crucial role they will play. To these key-times correspond as many key-values a, of
the scale factor as shown in the following table:

Table 0.2. Key-times 7, and key-values a..

ay Event ty
1 Present time ty
eq Balance of matter and radiation density leq
ag Beginning of accelerated expansion Iy
are | Reionization (beginningg of light emission) | f.

The decrease of H, in the transition from ﬁo to H, has the effect of increasing
all dates and thus moving the profile of the Universe toward the future, as shown in
Figure 0.2. Given the values of the key-scale factors a., the corresponding dates are
calculated with the usual integral

= ¢%

The resulting estimates are (§4.8):

Hy > teq = 50,1595 yr | | Hy + tre ~ 0.54409 Gyr
Hy — teq >~ 51,8330 yr Hy — te ~0.56224 Gyr

Hy +— 1, ~ 7.37949 Gyr
H, — t, ~7.62569 Gyr
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The determination of a numerical profile of the MR-model is in itself a significant
achievement, but what we actually need to continue our analysis is an analytical
representation of it. However, it is unthinkable to search for an exact solution of
the Weierstrass equation. It would also be futile because, in all probability, it would
involve non-elementary transcendental functions tractable only through approximate
representations.

a(t,t)

H,=70
sl H, = 67.74
1
ag | zero acceleration 13.3611113.8069
0.5+

deceleration || acceleration

] l l | |

T i T T U U

5 1 10 t, 15 20 25 f
age Gyr

of the Universe

Fig. 0.2. Profiles corresponding to the two values H, and H, of the Hubble constant.

Fortunately, this crucial problem is solved in §4.9 by noting that a profile of the

type
a(t,ty) = ot/ cosh(Bt) — 1

with o and 3 positive constants, is very similar to that obtained numerically. Indeed,
it becomes virtually indistinguishable (especially at the key-points mentioned above)
if the constants take the values (Theorem 4.3)

a~0.607247, B =0.178366 Gyr !,

that follow from taking the estimate H, for Hubble’s constant.
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These profiles are in perfect agreement with Figure 0.3 taken from A.G. Riess’
Nobel Lecture and conveniently reworked.! The envelope of the spatial sections (red
curve) has the same trend as the scale factor.

Universe
profile

inflection
point

accelerated
expansion

slowed
expansion

time

sections today
snapshot

Fig. 0.3. Riess profile.

Given this analytical profile, a theoretical and numerical analysis concerning the
transmission of light signals, the visibility of the Universe, and the redshift phe-
nomenon is performed in the last two chapters.

The result of this analysis is summarized in Figure 0.4. This figure shows the
configuration of the Universe at the present time and as it is seen by an observer
living in any galaxy B. For a better understanding let us assume that we are this
observer.

12011 Nobel Prize in Physics, together with Saul Perlmutter and Brian P. Schmidt ‘for the
discovery of the accelerating expansion of the Universe through observations of distant
supernovae’.
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Galaxies forever Galaxies today
invisible from B visible from B

AN

Tvis (t0)| IriﬂV

~20.59 '~ 45.61 Glyr

® =

sphere S3

expansion expansion

N

Wyis (to)
increasing angle
with limit v,

for t — +oo

Viny

constant angle
in time

Galaxies forever
invisible from B

Galaxies forever
invisible from B

Today, cosmic space is a three-dimensional sphere
in accelerated expansion
with radius r, ~ 1460 Glyr
and with circle of maximum radius>~ 9176 Glyr

/

expansion

N\

expansion

Fig. 0.4. Present time Universe configuration referred to an observer placed in a galaxy B.

The great circle represents the three-dimensional sphere S3 where the galaxies
are currently distributed. Its radius is ry ~ 1460,42 Glyr (4.15). The upper part of the
figure shows how the observer in B sees the cosmos in its vicinity. Because of the ex-
tremely small curvature of S3, the Universe appears to be flat at least up to a distance
of about 29.59 billion light-years. This is the current visibility radius ry(f,) be-
yond which nothing can be seen today. There is also an absolute invisibility radius

of the Universe

Finy =~ 45.61 Glyr




Preface Xvii

beyond which the Universe remains forever invisible to B.

These two ‘radii’ are in fact distances measured on the sphere S3, starting from
B, thus subtending two angles at the center W,(fy) and Wy, . In the course of time,
the current visibility angle yy;s(t)) tends asymptotically to the absolute invisibility
angle y;,,, which instead remains constant. It should be mentioned that they are not
shown in the same scale of the rest of the figure. In fact, respecting the scale they
would turn out to be almost imperceptible because their value in radians is very very
small:
nislt) 0.020262, Wipy = 1™ ~0.031233.

) )

YWyis (to) =

The conclusion is astonishing:

Suppose we live in the galaxy B. There is a world of galax-
ies immensely larger than that we can observe today and
that will forever remain unknown to us. However, this un-
seen world affects the evolution of the entire Universe, thus
also that part visible to us today.

But there is still something else we must point out:

Any other observer placed in a galaxy B' of that world now
invisible to us will reach the same geometric and numerical
conclusions as the observer in B.

skkok
Known and lesser-known results can be found in this book,

but in any case the method by which they are obtained
is definitely new.
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Geometry of the cosmic space-time

1.1 Geometrical postulates

In a simplified, large-scale view of cosmology, we can think of the bodies spread
throughout the Universe as particles constituting a cosmic fluid. It is not necessary
to discuss now the nature of these cosmic bodies; they can be stars, galaxies or
whatever. For simplicity’s sake, we will interpret them as galaxies,! The cosmic
fluid will therefore also be referred to as galactic fluid.

First postulate. The evolution of the Universe is described in a four-
dimensional M manifold called cosmic space-time. It is made of points
called events.

Second postulate. The life of a cosmic body (galaxy) is a sequence of events
constituting a regular curve in M that we call history or world-line. The
cosmic fluid histories form a congruence of curves that fills the entire
space-time M (see Figure 1.1).

A congruence is a bundle of regular curves that never intersect. Collision between
cosmic bodies is therefore excluded by this postulate.

! Let us keep in mind that one of the first fundamental phenomena observed in cosmology is
the Hubble law which concerns the distance between galaxies and their recession speed.
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cosmic space-time M

T C
A
Histories of cosmic bodies A, B, C, ...
: E
B
F

S RB

Fig. 1.1. Cosmic space-time M and congruence of cosmic body histories.

Histories of
cosmic bodies

section o
) cosmic time

L)

Fig. 1.2. Cosmic fluid hystories, spatial sections and cosmic time.
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Third postulate. In M there exists a foliation of tridimensional submani-
folds S;, called spatial sections, transversal to the cosmic fluid histories and
parameterized by a real number t varying in an open interval (tq,t5) C R
(see Figure 1.2).

The term foliation stands for a partition of a manifold M into submanifolds of
lower dimension and disjoint, i.e., without points of intersection. A congruence of
curves, see above, is an example of foliation where the submanifolds are curves
(dimension 1). Furthermore, the term transversal means that the histories are never
tangent to the spatial sections. The attribute ‘spatial’ assigned to sections S, will be
justified later with the fifth postulate.

A first theorem follows, whose proof requires the knowledge elementary notions
of differential geometry:

Theorem 1.1. (i) Cosmic fluid histories establish diffeomorphisms between spatial
sections. (ii) These stories are themselves diffeomorphic to the open interval (tg,tg).

The parameter ¢ can be interpreted as cosmic time. If an event e € M is localized
in a spatial section S; then we say that it happens at time ¢, or that its date is 7(e).

The cosmic time ¢ determines a chronology of events: given two events e¢; and
ey, we say that

e1 occurs before e, <~ t(e1) <t(e2),
ey occurs after e» <~ t(e1) > t(e2),

e1 and e; are simultaneous <= t(e;) =t(e2).

Therefore the spatial sections S; are composed of simultaneous events.

For now, cosmic time ¢ is not uniquely determined. It can be replaced by any
other parameter, as long as the latter does not change the chronology, which thus has
an absolute character. Time ¢ will acquire physical meaning only through a bridge-
postulate (Chapter 2) preparatory to the dynamics.

The establishment of an absolute time, which is one of the postulates of Newto-
nian mechanics, may raise some perplexity. However, it is a necessary prelude to the
definition of the concepts of homogeneity and spatial isotropy, which we shall see
in a moment and which together form the so-called cosmological principle adopted
in most cosmological models.

On the other hand, the existence of submanifolds of simultaneous events is justi-
fied by the assumption (which will result in a postulate) that there exist scalar phys-
ical entities p(t), such as the density of matter or radiation, which are monotonic
functions of time, i.e., always increasing or always decreasing. It follows that two
events have to be considered simultaneous if the density rho takes the same value in
them, and thus that the density p can be taken as the time parameter at the place of 7.
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1.2 The isotropy principle and its consequences

The Copernican principle assumes that neither the Sun nor the Earth are in a spe-
cial, particularly favored position in the Universe. We can strengthen this principle
by requiring that there are no favored directions either. This is the so-called princi-
ple of isotropy. Since we can interpret a spatial cross section S; as a snap-shot of the
three-dimensional physical world at time ¢, we can express the principle of isotropy
as follows:

Forth postulate. On each space section S; there are no privileged vector
fields having geometrical or physical meaning.

The tangent vectors to the space sections will be said to be space vectors. It
is reasonable to think that in each of the snap-shots of the physical world we can
measure lengths, angles, volumes, etc. We translate this thought into the following
postulate.

Fifth postulate. In cosmic space-time there exists a tensor field g, covariant
and symmetrical, which cancels on the vectors tangent to the curves of the
cosmic fluid and whose restriction on each space section S; defines a positive
metric tensor g;.

Remark 1.1. In this postulate it is understood that g, and hence the tensors g;, are of
sufficiently high class to guarantee the validity of the formulas in which they will be
involved. In any case, there is no loss of generality in considering of class C™ all the
scalar, vector and tensorial fields introduced so far and which we will introduce in
the following. e

Each space section S; thus turns out to be a three-dimensional Riemannian man-
ifold with positive definite metric (see Figure 1.2).

By means of the metric g; we can define the gradient of any scalar field over S;.
Such a gradient is a privileged vector field. This is contrary to the isotropy principle.
The following theorem avoids its existence.

Theorem 1.2. Spatial homogeneity: from the isotropy principle it follows that every
scalar field on M having geometric or physical meaning is a function of cosmic time
t only, i.e., it is constant on every spatial section S;.

Spatial homogeneity is also named spatial uniformity.

In the axiomatic path we are following, spatial homogeneity is thus a conse-
quence of isotropy, whereas in the classical approach to cosmology homogeneity
is considered as a ‘principle’ along with isotropy (see above). In fact, as shown by
the following theorem, the isotropy principle implies the Copernican principle men-
tioned at the beginning of this section.
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Theorem 1.3. The isotropy principle implies the non-existence on any spatial section
S; of privileged points having a geometrical or physical significance.

Trace of the proof. In a (sufficiently restricted) neighborhood U C S; of such a
point P we can define, by means of the metric g;, the distance dpx(t) of each point
X € U from P. Consequently, the gradient of dpx results in a privileged vector field
on U, in contrast with the isotropy principle. m

Theorem 1.4. Each space section (S;, g) is a three-dimensional Riemannian mani-
fold with constant curvature.

Trace of the proof. Here basic notions of Riemannian geometry are required,
partly recalled in the following §1.4. In any three-dimensional Riemannian manifold
the Ricci tensor determines three privileged directions at each point, against to the
isotropy principle. These directions are not defined if and only if the Ricci tensor is
proportional to the metric tensor: R, = A; g;. The factor A; must be constant on S; by
virtue of the Theorem 1.2. Thus, (S;, g;) turns out to be an Einstein manifold. A the-
orem of Riemannian geometry states that every three-dimensional Einstein manifold
has constant curvature. m

1.3 Comments on the Weyl principle

Generally, cosmology treatises consider the Weyl principle and the cosmological
principle (isotropy and homogeneity) as bases for constructing models of the dy-
namics of the Universe. They are commonly formulated as follows (see for instance
[17]).

Weyl principle: In cosmic spacetime the world-lines of the galaxies form a bun-
dle of non-intersecting time-like geodesics orthogonal to a series of space-like hyper-
surfaces.

Cosmological principle: On large scales the Universe is spacely homogeneous
and spacely isotropic.

First Comment. Weyl’s principle places cosmology in the relativistic domain
from the very beginning. In our approach, the second part of this principle, concern-
ing geodesics, is a theorem (Theorem 2.9) placed in Chapter 2 (bridge-postulates)
while the first part concerning cosmic histories is part of our second postulate. One
may ask the question: why not accept Weyl’s principle from the beginning instead
of spending so much time and space starting from several much weaker postulates?
The answer is that, first, our postulates are easy and straightforward to understand for
those who are not readily familiar with the theory of general relativity. The second
reason is that by following our longer way we do not lose sight of interesting and
important facts that are not strictly relevant to relativity. It is the difference between
a trip by car and a trip by plane. With a car one can closely observe the succession of
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picturesque sights and splendid monuments. Apart from this it should be noted that,
as we will see, Hubble’s law as well as many other concepts, concerning for example
the scale factor and reference space, isotropic tensors and cosmic connections, which
are independent of any assumptions about the ‘physics’ of the cosmic fluid, would
be left forever in darkness.

Second comment. About the cosmological principle it should be noted that in
our approach the principle of isotropy implies (as a theorem) spatial homogeneity.

1.4 Linear connections and curvature

Let us recall some basic notions of differential geometry, not only to clarify the mean-
ing of what was said in the preceding sections but also because we will refer to them
often in what follows. Consider an n-dimensional variety Q with local coordinates
(@*) =(q",-...q").

1. A connection I" on a manifold Q is a rule, called parallel transport, accord-
ing to which, assigned on Q any parameterized curve g%(£) on an interval (&, &)
and given any vector vy at the initial point Pz, = [¢%(&o)], a vector vg at every point
Pz = [¢*(&)] of the curve and thus also at the final point Pz, = [¢*(&;)], results to be
uniquely determined. It should be said immediately that, keeping the initial and final
points as well as the vector vy fixed, but changing the curve joining these points, the
vector carried to the final point is, in general, different from the vector obtained by
traversing the previous curve.

2. A connection is said to be linear if its parallel transport commutes with
the linear combination of vectors. In the domain of a given coordinate system
(g%) = (q',...,¢") a linear connection I" is represented by three-indexed symbols
r 02/ B> functions of the coordinates, such that the transport of a vector v*(&) along a

curve g%(&) is governed by the transport equations

dvY

daP
A T _
dé

Y o1
Fan dE =0, (1.1
From now on we will consider only linear connections. The ‘linear’ attribute will
almost always be omitted. By changing the coordinate system, the symbols of a
connection change according to the law

Y _ v Y g B vy Y o def aqa, o def 9g°
Ty =y T V6 05 +00adl IS G0 5 S S0

ap =y lapta Jg (1.2)

which gives intrinsic meaning to the transport equations (1.1).>

2 A definition or equation that is expressed by recurring to a coordinate system is said to have
an intrinsic meaning, or even a geometrical meaning, if it does not depend on the choice
of the coordinates.



§1.4 - Linear connections and curvature 7

3. A connection is said to be symmetric if its symbols are symmetrical in the
lower indices, I, B = Fﬁ .- 1t can be shown that this property does not depend on the
choice of coordinates.

4. A symmetric connection determines two curvature tensors of fundamental

importance, the Riemann tensor and the Ricci tensor. Their components are re-
spectively defined as follows:>

def Vi Vi
Roup = dulap = IpTia+Tap Tt —Tua Tpy (13)
def o _ u u L u
Rop S Ry 5 = Ouly — Oplity + Ip oy — I3, Ty (1.4)

5. A parameterized curve g%(&) can be interpreted as a motion with respect to
the ‘time’ & of a point on the manifold Q. The vector

o dg”
v"‘(é)“:‘"% (1.5)

can then be interpreted as velocity of the point. A connection allows to define the
acceleration vector

wrd?q’ .y dq* dgP

a'(8)= ez lap gg aE (1.6)

Both of these definitions are independent of the choice of coordinates.

6. A curve is called geodesic if its acceleration is always parallel to the velocity,

a(£) —ué)fl—qg, 17

that is, if there exists a function A (&) for which the equations of geodesics

d*q" .y dq® dqP dq"

agz Ml qg ag =M g (-9

are fulfilled.

7. The parameter of a curve can be changed. Both the speed and the acceleration
then change. A geodesic can admit an affine parameter defined up to an affine
transformation, for which the acceleration vanishes, so that equations (1.8) become

2 .y o B
dq’ Fayﬁdi_di_zo (1.9)
d&? d& d&

3 These definitions are a matter of conventions. They can change both for the position of the
indices and for the sign.
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8. A manifold is said to be Riemannian if is endowed by a double symmetric
tensor field gop = gpy. non-degenerate det[gq pera] 7 0, called metric tensor or
briefly metric. If its signature is positive the manifold is called properly Rieman-
nian or simply Riemannian; otherwise it is called semi-Riemannian or pseudo-
Riemannian. A metric tensor is used first of all to define the scalar product (also
called dot product) between two vectors:

def
u- vigaﬁuavﬁ.

9. Whatever the signature of the metric, a Riemannian manifold admits a unique
‘canonical’ connection, called Levi-Civita connection. This is a linear and symmet-
ric connection whose transport preserves the scalar product. It can be shown that its
symbols are given by

def
L= 187 (Qugps + Ipgsa — 958ap) - (1.10)

These are called Christoffel symbols, more precisely Christoffel symbols of sec-
ond kind. Those of first kind are obtained by lowering the upper index by means of
the metric tensor::
def
Iips éfayl; 8y6 =3 (0ugps + Ipgsa — s8ap) - (1.11)

10. Beside the Riemann and the Ricci tensors (1.3) and (1.4) for a Levi-Civita
connection we can also define the totally covariant Riemann tensor

def
Ryoup = 8avRYyup (1.12)

and the Ricci curvature (or Ricci scalar)

RE ¢ Ry (1.13)

11. It can be shown that if equation

Ropgys = K (gaygps — 8as &py) (1.14)

is satisfied then the factor K is a constant, called curvature constant, and the Rie-
mannian manifold, or the metric tensor, are said to have constant curvature. Equa-
tion (1.14) is equivalent to

Ry5 =K (8} gps — 05 2py)- (1.15)

It follows that on a manifold of dimension n with constant curvature K the Ricci
tensor and the Ricci scalar respectively take on the expressions

Ryp=(n—1)Kgep| | R=n(n—1)K (1.16)
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Remark 1.2. 1t is important to note that the Christoffel symbols (1.10) are invariant
under conformal transformations of the metric

8ap = §aB =08ap

with constant factor o € R. It follows that the components of the Riemann and Ricci
tensors are also invariant:

RO[%)/S:R%)/S’ R(Xﬁ :R(Xﬁ L]

Remark 1.3. If a metric g, has constant curvature K then every metric conformal to
it §aﬁ = 0 gqp With constant factor ¢ has constant curvature given by

K= (1.17)

alx

In fact, if g4 has constant curvature then the equation (1.15) is satisfied and there-
fore

R 5 =K(8) gps — 05 gpy) = Ko~ ' (85 2ps — 85 8py):
1.e. R R
R =K (8, 8p5 — 05 &py):

with K&K /c. e
Remark 1.4. It can be shown that in a neighborhood of every point of a constant

curvature manifold K there exist coordinates (x;), called curvature coordinates or
Riemann coordinates, such that ds® takes the Riemann form

Yiei (dx;)?

ds* = 5
(1+ 3K Lieix?)

ei=+1 (1.18)

For a positive definite metric, for which e; = 1, we have

Yi(dx;)?

ds? = — =0
(1+ 3K L)

(1.19)

The curvature coordinates are orthogonal: g;; = 0 for i # j. Such a coordinate system
is determined by a point p,, where the coordinates vanish, and by a basis u of unit
vectors applied in p, orthogonal to each other. The presence of such a point is not
in conflict with the isotropy principle. A notable example of Riemann coordinates is
provided by the stereographic projection of the sphere S, (§7.1). o
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1.5 Permanence of the sign of spatial curvature

We denote by K(z) or by K; the curvature constant of a spatial section (S, g;) (see
Theorem 1.4). This ‘constant’ is a function of ¢ over the whole time interval (¢4, 7¢)
of the life of the Universe.

Theorem 1.5. (i) If K;, # O then for every other time t # t1 thecurvatureK,, has
the same sign as K;, and the two metrics g; and g, are related by the conformal
transformation

gn =1 8o (1.20)
1

(i1) If Ky, = 0 then K, = 0 in ogni t,.

Proof. Let us denote by R; the Ricci tensor of the spatial metric g;. From the first of
(1.16) it follows that
Rll = 2Kll gll y RIZ = 2K[2 ng'

Supposing K;, # 0 and setting
o Kn
K[l ’
then, as stated in Remark 1.3 and for the equation (1.17), the curvature of the con-
formal metric § =0 g, is
- K,
K - = K[l .
o
By virtue of (1.16) the Ricci tensor of g is equal to
[#] R= 2K, g1 -
On the other hand, as stated in Remark 1.2 we have §ab = Ry,, therefore

[#:] R= R, =2K,;, &,.

From these two last equations [] and [+x] it follows that

Kll 8tyab :Klzgtzab (1.21)

and (1.20) is proved. Since both metrics g;, and g;, are positive definite, in (1.20)
K;, and K;, must have the same sign. (ii) As demonstrated above, the two conditions
K;, =0 and K;, # 0 are contradictory. m

Remark 1.5. Theorem 1.5 states that the sign of the spatial curvature K(t) does not
change throughout the open time interval (to,ty) of the life of the Universe. The sign
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of the curvature dictates the topological characteristics of the spatial sections S;.*
For example, for K () = 0 the spatial section S; can be homeomorphic to the three-
dimensional Euclidean space Ej, or to a torus T3. Instead, for K(¢) > 0 the S; can
be a three-dimensional sphere S3. In any case, even if K(¢) is a continuous function,
a change in its sign would produce a discontinuity in the topology. Thanks to the
Theorem 1.5 such an unacceptable singularity is avoided. e

1.6 Conformal factor between two spatial metrics

In the case of non-zero curvature, since the spatial curvatures at two different times
K;, and K;, have the same sign, the ratio K;, /K,l is positive, so that we can introduce
the following positive function in two time variables:

Ik,
a(t, ) & K—’2 (1.22)
3l

Consequently equation (1.20) takes the form

g, = d*(t1,0) g, (1.23)

and we can therefore state that (see Figure 1.3)

Theorem 1.6. There exists a positive function a(t,ty), withty,tp € (tq, tB), such that
two spatial metrics are related by the conformal transformation (1.23).

Remark 1.6. In the case of zero curvature the existence of a function a(t;,t;) > 0
satisfying equation (1.23) follows from the general property that two Riemannian
manifolds with the same dimension, the same signature and same curvature constant
are locally isomorphic (see [7] [8]). ®

Remark 1.7. Equation (1.23) is equivalent to

dsy, = a(t1,12)dsy, (1.24)

where ds;, and ds;, are the arc-elements of the metrics g;, € gs,. ®

4 The famous Killing-Hopf theorem, see for instance [22] and [16], is the basic tool for the
topological classification of manifolds with constant curvature.
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S RB

Fig. 1.3. Conformal transformation (1.23) between two spatial metrics.

Remark 1.8. From equation (1.23) we derive the following properties of the confor-
mal factor a(z1,1):

a(t,t) =1, normalization,
a(ty, ) a(tz,t3) = a(ty,t3) composition, (1.25)
1 . .
a(tr,t]) = inversion.
(t2,11) an)

They will be applied frequently without explicit mention. e

1.7 Reference time and scale factor

By imposing a value #; to > and leaving #; = ¢ free to vary throughout the interval
(ta,te) we obtain a function a(t, ;) of the single variable # which we call scale fac-
tor with reference time 7;. We call reference space the spatial section S, equipped
with the reference metric g,,. For t = t; we have a(t;,7;) = 1. The reference time
can then be interpreted as normalization time for the scale factor. From (1.23) we
derive the equation
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g =a(t,1;) g, (1.26)

which in the following will often be referred to as factorization relation of spatial
metrics.

az(t>tt)gtn =8t

- &t
. A
8y
— ] :
‘ an B
St
reference

I
reference
S B time

Fig. 1.4. Scale factor a(t,#;) with reference time f;.

Remark 1.9. The scale factor a(t,t;) never vanishes in the open interval (¢, ) be-
cause the spatial metrics are always regular. e

By applying the rules (1.25) it can be shown that the following link exists be-
tween the scale factors referring to two different times a(z,#;) and a(t,1,)

Cl(l‘,tﬁ) :a(tatb)a(tbatﬁ) (1.27)

Therefore they differ by the constant factor a(1,,1;) depending on the two reference
times. Notice that this link looks like a chain rule.

From (1.22) and (1.24) we also derive the equations
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K def
Kt)=——— K. =K 1.2
(t) az(t,tﬁ)’ # (tﬁ) (1.28)
ds; = a(t,1)ds;, dsy < ds(ty) (1.29)

which will be applied several times in the following.

Remark 1.10. The scale factor is a dimensionless function of cosmic time ¢ that, as
will be seen, holds all the information about the time evolution of the Universe and
most cosmological quantities. The fact that in our axiomatic approach the scale fac-
tor a(t,t4) turns out to be dependent on the choice of a reference time represents a
novelty with respect to the current literature. This dependence is not only of theo-
retical interest but also provides a solving in checking the correctness of statements,
definitions and equations. It is indeed clear that, to make geometric or physical sense,
statements, equations and definitions involving it, possibly together with its deriva-
tives, must be independent of the choice of 7y. An example is the definition (1.33) of
the Hubble factor in the next section. e

1.8 Recession speed and Hubble law

Two types of distances are defined between two cosmic bodies A and B (see Figure
1.5 below):

o The synchronous distance dup(¢) at time 7 is the distance measured in the met-
ric g; of the spatial section S;, i.e. the length of the geodesic that joins the intersection
points of the histories of A and B with ;.

oo The reference distance dsp(1;), also called co-moving distance, is the dis-
tance measured in the reference space (S,t , g,t).

By virtue of equation (1.29) the relationship
dAB(l‘) = a(t, l‘ﬁ) dAB(tﬁ) (1.30)

holds between these two distances. Since #y is fixed, differentiating this equation with
respect to ¢ we find

dap(t) = a(t,t;) dap(ty). (1.31)
In turn, by applying (1.30), we get

dag(t) = Zgiﬁ% das(t) (1.32)

This equation holds whatever reference time #;, so we can introduce the function of
the single variable ¢
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called Hubble factor or Hubble parameter, and rewrite (1.32) in the form

dap(t) = H(t)dap(t)

15

(1.33)

(1.34)

This is the well-known Hubble law. The derivative dap(¢) is called recession speed
of the galaxies A and B at time ¢.

Remark 1.11. Since a(ty,t;) = 1 (normalization property) the value of the Hubble
factor (1.33) at the reference time #; is

H(ty) = a(ty, ;)

This formula will be useful later on. e

(1.35)

space

g
reference
S B time

8t
gl‘n
— H :
: reference synchjonous:
: istance: distan
dAl (tt)g dap )
St
St
reference

Fig. 1.5. Distances between two galaxies A and B.
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1.9 Dimensional analysis

An equation cannot be considered correct if it is not consistent with the physical
dimension of the quantities involved. Unfortunately this principle of dimensional
homogeneity is not always respected. This causes reprehensible misunderstandings.
Let’s look at three examples.

(i) A widespread habit is to set ¢ = speed of light = 1. With this action the sym-
bol ¢ disappears from the formulas and their dimensional coherence is lost. The same
happens for other physical constants, such as Planck’s constant. Of course it is com-
pletely legitimate to set ¢ = 1 if it is considered convenient for the calculations. This
only involves a change in the units of measurement of lengths and times. But if you
opt for this choice it is extremely important to keep the symbol c in the formulas even
if its numerical value is 1.

(i1) On a Riemannian manifold one can consider coordinates of different dimen-
sions: angles (dimensionless), times, lengths, etc. As a result, the various compo-
nents of the metric tensor can have different dimensions. This difference has strong
repercussions on the components of the curvature tensors, therefore, in particular, on
Einstein’s equations. As will be seen in the next section, to avoid this confusion it
will be convenient to use on cosmic space-time only length-dimensional coordinates,
including time.

(iii) The exponential function €°, where z is a real or complex number, is defined
by a power series of z which, if it represents a physical or geometric quantity, must
be dimensionless, otherwise it would make no sense to add z to z2, etc. The same
consideration must be given to the extension of ¢* to the case where z is a square ma-
trix: its elements must be dimensionless. There are many examples in the literature
where due attention is not paid in this regard.

In the following we will use the symbol Dim (X) to indicate the dimension of a
physical-geometrical entity X .5 The fundamental dimensions are denoted as follows:

Dim
Dim
Dim

Dim

time) =T
length ) =L

mass) = M

o~ o~ o~ o~

dimensionless quantity) = 1

The physical dimension of a quantity X can be expressed as the product of positive
or negative integer powers of the symbols T, L and M,

Dim (X) = T*L’M¢, a,b,ceZ.

The dimensions of the recurring fundamental quantities are listed in the following
tables.

5 The symbol [X] is also widely used.
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Table 1.1. Geometrical and kinematical quantities

Quantity | Dim Quantity Dim

area L2 acceleration LT 2
volume L3 angle 1 (dimensionless)
velocity [LT~!|| angular velocity T-!

Table 1.2. Physical quantities

Quantity Dim

force (or mass times acceleration)] MLT~2

pression (force/area) ML-IT-2

energy, work (force times length) | ML2T—2

energy density (energy/volume) | ML~ T2

mass density (mass/volume) ML—3

Table 1.3. Scale and Hubble factors

Quantity Dim

scale factor a(r) | 1 (dimensionless)

Hubble factor H () T!
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1.10 Co-moving coordinates

cosmic space-time M

(¢%) histories of
. : cosmic bodies
U : : (galaxies)
S,
N St

reference

time %

Fig. 1.6. Co-moving coordinates.

Since the reference space S, is diffeomorphic to all other spatial sections, if we take

a coordinate system (¢%) = (¢', 4% ¢°) on an open domain U C Sy, then we generate
a coordinate system (,¢“) on the open tubular sub-set of M made of the galactic
histories that intersect U (Figure 1.6).

Coordinates of this type are called co-moving coordinates. The three spatial
coordinates (¢“) are Lagrangian coordinates of the cosmic fluid: they are constant
along the histories crossing U.

In the following we will denote with g;,, and g, the components with respect
to the coordinates (¢“) of the spatial metric tensors of S, and Sy, respectively. They
satisfy the conformal relation (1.26):

Srap = @ (t,15) 8uab (1.36)

We will not use particular types of spatial coordinates (¢“). We will only impose
the condition that they are length-dimensional, so that the components of the metric
tensor g4, are dimensionless. Consequently, for reasons of homogeneity, we will
replace the time coordinate ¢ with a L-dimensional coordinate ¢° through the simple
linear relation

¢ =Kt (1.37)
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where K is an arbitrarily fixed positive constant having the dimension of a velocity.
We call it auxiliary velocity.®

In the following we will always and tacitly refer to coordinates (¢*) = (¢°,q%)
of this type. The spatial coordinates (q*) will remain generic.

1.11 Isotropic vectors and tensors

We say that a vector field or a tensor field in the cosmic space-time M is isotropic

if it does not induce particular vector fields on the spatial sections. Hence, in an
isotropic cosmological model non-isotropic vector or tensor fields are not admissi-
ble.

Theorem 1.7. A vector field V% is isotropic if and only if its components with respect
fo a co-moving coordinate system (¢%) = (q°,q") are of the type

(1.38)
Vé=0.

{ V? = function of ¢° only,
Proof. (i) If the function V° also depends on the spatial coordinates (¢%) then on each
spatial section its gradient would define a particular vector field in contrast to the
isotropy principle.

(ii) For the co-moving coordinates (¢%) = (¢°,¢“) only transformations of the
spatial coordinates (¢“) are admissible since the coordinate ¢° = k¢ is uniquely de-
fined.” Therefore the spatial components V¢ define a particular spatial vector in con-
trast to the isotropy principle. Hence they must be zero. m

Theorem 1.8. A contravariant double symmetric tensor field is isotropic if and only
if its components T®B with respect to a co-moving coordinate system (¢%) = (¢°, ¢%)
are of the type

T = ¢ (¢°) = function of ¢° only,
7% 0, (1.39)

T% = y(q") g‘u"’ () = a function of ¢° times g‘u"’ ,

where g‘u"’ (q) are the contravariant components of the reference metric, having de-
noted by q any spatial coordinate system (q°).

5 When we will deal with relativistic cosmology we will be led to consider kK = c.
7 This must also be taken into account in the following.
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Proof. Transformation law of the components of a contravariant tensor:

!
Jg, def dq” 7 def dq%

dq%’ o dg¥”

!
3

T =% Jb, TP

For a co-moving coordinate transformation that leaves ¢° unchanged we have
/ / /! n
J(()) :1, J2 :0, Jg :0, JS/ZO, 8/:0

Asa consequence,

/

T :ng"lo’ TR — (Jg,)z 00— 00"
R’ /1, /1,
T =J, 8, TP =15 Jb, 7% = Jb, T,
T = Ja, Jb, 7B = jo, b 7V
ese equations show that: (i is a scalar field, so it must be a function of on ;
These equat how that: (i) 7% lar field, so it must be a funct f only ¢°
(i1) T% is a space vector field, so it must be zero; (iii) T% is a symmetric tensor on

every spatial section therefore it should not generate particular eigenvectors; it can
only be proportional to the metric with a coefficient depending at most on ¢°. m

Remark 1.12. A similar result holds for a covariant symmetric two-tensor field 7y g:

Too = ¢(g°) = function of ¢° only,
Tow =0, (1.40)

Tup = ¥(4°) gar(q) = function ¢° times gy,

Remark 1.13. This theorem shows that every isotropic symmetric two-tensor field,
whether contravariant or covariant, is completely determined by two functions ¢ (¢°)
and y(q°) of ¢° which we call characteristic functions of the tensor. e

Remark 1.14. An anti-symmetric double contravariant tensor F op gives rise to a
spatial vector F°? and a spatial anti-symmetric tensor F%. For isotropy it must be
F% = (0. However, every anti-symmetric two-tensor F” on a three-dimensional Rie-
mannian manifold admits real eigenvectors. This goes against the isotropy princi-
ple. Consequently, an isotropic anti-symmetric two-tensor is necessarily zero. This
is for example the case of the electromagnetic tensor. Therefore an electromagnetic
field should not appear in an isotropic cosmological model, for example in Einstein’s
equations. However, the presence of a large number of electromagnetic fields pro-
duces a large number of spatial eigenvectors such as to make the isotropy principle
effectively respected, so it can be summarized in an isotropic scalar field (i.e. depen-
dent on ¢° only) as a radiation density. e
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1.12 Cosmic monitor and wandering particles

Just as for any other spatial section, the reference space is in one-to-one correspon-
dence with the galactic histories that cross it transversally and therefore with the
set of all galaxies. Suppose that there is a control device for this set, say a cosmic
monitor, made up of points (pixels), each of which represents a galaxy.

Suppose further that this monitor is under the control of an Astronomer. The
monitor and the Astronomer are drawn at the bottom of Figure 1.7. Just for fun the
Astronomer wears the clothes and hat of a wizard. The M spacetime is represented at
the top, along with the galactic curves and space slices. For simplicity the reference
space in denoted by S.

history ¥(r) of a wandering particle

histories of cosmic bodies

reference
space

spatial
sections ——>

The Astronomer
cannot see

the cosmic-space-time
over his head

S B

Fig. 1.7. The Astronomer observes the trace of a wandering particle on the cosmic monitor.

Remark 1.15. Notation to keep in mind. In the following all the entities that are in
the reference space, and that are perceived by the cosmic monitor, will be marked by
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a superimposed tilde ™ :

g, any spatial coordinate system (g“);

g, 8up » reference metric and its covariant components;
Naj‘), Christoffel symbols of the metric g; etc. e

The cosmic monitor is a snapshot of the cosmos at time #; and is therefore a sort
of three-dimensional ‘crystal ball’ for the magician who observes it. In this sphere the
world is frozen at time #;. The galaxies are stationary and no expansion or contraction
is felt.® The Astronomer has a clock that indicates the cosmic time ¢, but he does not
see the space-time, which in the figure is above his head. However, even though the
galaxies remain fixed, he observes on the monitor the trace of moving points which
he calls wandering particles.

For us, who are aware about the existence of cosmic space-time, the traces that
these particles leave on the monitor are the projections of histories of tiny objects
wandering in the Universe. They could be spacecrafts on intergalactic travel, or
comets, or physical particles, such as photons.

In Figure 1.7 we can see the ¥(¢) and ¥(¢) curves of a wandering particle starting
from a galaxy A at time 7, which reaches another galaxy C at time ¢, and which
crossed a galaxy B at an intermediate time ¢.

However, the Astronomer notes that some of the observed traces are geodesics
(Figure 1.8). He can distinguish them because, let’s remember, the monitor has a
metric, which is identified with that of the reference space, and furthermore, being
also a Mathematician, the Astronomer is acquainted with this notion.

Thus the Astronomer perceives the idea that in the Universe there are special
wandering particles of which, however, he does not know the physical nature. As
a mathematician he then conjectures that the space-time curves from which these
traces originate are also geodesics. But, he observes, for this conjecture to make
sense, the cosmic space-time must be endowed with some particular connection.

Let us make this observation our own.

In the next section we will investigate about the existence of a connection in some
way compatible with the various structures introduced so far into cosmic space-
time by virtue of geometrical postulates. It should be noted at once that this will
not be a Levi-Civita connection because in space-time there does not exist, at
least for now, a four-dimensional metric tensor. Metric tensors are present in the
spatial sections only.

8 If we like, it could be interpreted as the firmament of biblical cosmology.
9 He is a very long-lived and patient astronomer, his times are of the order of millions of
years.
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Fig. 1.8. The Astronomer observes, rather surprised, the geodesic trace of a ’special’ particle.

1.13 Cosmic connections

In this section we investigate about the existence in cosmic space-time of linear and
symmetric connections satisfying suitable compatibility requirements with the ge-
ometric structures internal to space-time known so far. We’ll call them cosmic con-
nections. The order in which the requirements are exposed is not reversible.

Requirement 1. A cosmic connection I' = (1—'02/ ) must be isotropic, that is, it must

not give rise to particular vector fields on the spatial sections.

Theorem 1.9. A connection is isotropic if and only if its symbols FJB in co-moving
coordinates (q°, %) are of the type



24 Chapter 1 - Geometry of the cosmic space-time

ao =0, E)(L) =0
IG=E(q") 0, I, =F(q")8w(q), Iy=G(q)

]

(1.41)

where E, F and G are functions of q° only and where furthermore the symbols with
only Latin indices 1, are symbols of a connection on each spatial section.

Trace of the proof. Let’s recall the transformation law (1.2) of the connection

symbols and apply it to co-moving coordinate transformations that leave ¢° un-
changed,

and for which we have
=1, J' =0 J' =0 J=0 J=0.
We then examine all the particular cases of (1.2). Just one example for brevity:
LY = I T I8 JY -+ 1%06d = I Ty I8 T + 150,05 =T I3

This result shows that the I are the components of a particular differential 1-form
on each space section. For the isotropy requirement it must vanish: I’y =0. m

With the symbols (1.41) the transport equations (1.1) and the geodesic equations
(1.8) of an isotropic connection become

d dq° dqb
—v—l-Gv +F gy q =0.
dé d& dE
(1.42)
dv© dq dq dq
v .
0 ( a€* 5)* " qg =9
d’q dq® dg® (dq ) dq°
+Fgup—— +G =A =
qgr T ey d dé’
f ) £ dc ¢ 5 (1.43)
Lo poda' i pdet dd ) dot
d&? d& dE d& d& dé

For curves transversal to spatial sections the coordinate ¢° can be taken as a pa-
rameter. In this case ¢°(¢°) = ¢° and d¢°/dq" = 1 and the previous equations become
respectively
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v’ . dg®
d_qo"'GVO"'Fgabva d—ZO =0.
) (1.44)
dv© . dq* -
i +E (v 410 dqo) +F“"vad_q0 =0.
_ dq* dg’
“ag g TN

. (1.45)
d dg° dqg* d dq°¢ dq°¢
B B - S S ¥ o Y e
dq’ dq° dq° dq° dq° dq°

Theorem 1.10. The histories of the galactic fluid are geodesics with respect to any
isotropic connection.

Proof. The histories of the galactic fluid are transversal to the spatial sections for
which the equations (1.44) and (1.45) hold. Furthermore they are characterized by
the equations ¢ = constant so that (1.44) simplify to

d 0
TG =0,
transport equations : g (1.46)
ported dv*
g +Ev =0.

The equations of the second group (1.45) are identically satisfied, while the first
equation reduces to
G=A. (1.47)

This equality provides the multiplier that satisfies the geodesic equations for the
histories of the galactic fluid. m

Remark 1.16. The institution of a cosmic connection in cosmic space-time allows us
to define the important notion of free particle: it is a wandering particle whose
history is a geodesic in space-time. From Theorem 1.10 it follows that the histories
of the galactic fluid are free particles in any isotropic connection. With the exception
of this case, a free particle (‘free-falling particle’) should be understood as a particle
that is passively subject to the action of the cosmic fluid. e

Requirement 2. The coordinate ¢° is an affine parameter for galactic histories.

Theorem 1.11. Requirement 2 is satisfied if and only if G = 0.

Proof. This follows from (1.47). m

At this point the symbol table (1.41) becomes
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Iy=0, Ii=0, I=0
I =E@Q) 6, I;,=F(")8w(q) (1.48)

I’ are symbols of a spatial connection

while the first transport equation (1.46) simply reduces to

v’ = constant. (1.49)

Theorem 1.12. The I'-transport along galactic histories brings space vectors to
space vectors.

Proof. Space vectors are characterized by v* = 0 the transport equation (1.49) is
satisfied. m

By virtue of this theorem the following requirement makes sense

Requirement 3. The dot product between space vectors is conserved by the transport
along galactic histories.

Remark 1.17. Note that the dot product is not required to be conserved in transport
along any geodesic, nor along any curve, but along galactic histories. ®

Now we see how the Hubble factor is involved.

Theorem 1.13. Requirement 3 implies that the function E(q") coincides with the
Hubble factor thought of as a function of ¢°, E(¢°) = H(q").

Proof. The dot product of two space vectors u = [u?(¢°)] and v = [v*(¢°)] along a
curve ¢g%(q°) is given by

u(q”) - v(q") = gar(a’ @) u (¢’ (¢°) = (") Gur (@) u (@)Y (¢).  (1.50)

It follows that

d I3 b 2 (du® dv?
d—qo(“'v):gab(r}’) [Zaa’u“v +a (d_qov +“ad_q0 '

d
Requirement 2 translates into equation 70 (u - v) = 0 which develops into
q

a b
[*]  &ab [Za/u“vb—l-a (j—;l()vb—l—u“;l—;))] =0, Yu' .

Let us recall the second transport equation (1.46) of the space vectors, so far not
used,
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dv©
dq°

+EVv=0.
Then
(] <= guw [2d'u*V’ —aE (1"’ +uV")] =0

/

= gpu[d —aE] =0, Vu“,v”<:>E:a—:H(q°). "
a

After this theorem the symbol table (1.48) updates to the following:

Ayl
I

0=0, I}i=0, I;3=0
a0 =H(") 65, I, =F(q")8&uw(q) (1.51)

I are symbols of a spatial connection

Remark 1.18. As we know the scale factor a(z) can be seen as a function of the
parameter ¢° = k't having the dimension of a length. Its derivative with respect to ¢°
will be denoted by a’(q°). As regards the Hubble factor, passing from the parameter
t to the parameter ¢°, it results

a da dq° a
H(n< > :a*ld—qod—qt —x2
Then if we set ,
H(g") = = (1.52)
we get
H(t)=xH(g"). o (1.53)

Requirement 4 (the last one). The I"-geodesics transversal to the spatial sections
are projected into geodesics of the reference space.

Remark 1.19. This is the requirement that gave rise to the search for connections in
space-time (end of §1.12). Note that this requirement is satisfied by galactic histo-
ries whose projections reduce to points of the reference space (i.e. to points on the
monitor). *Points’ are in fact singular geodesics.'”

Theorem 1.14. A curve y(q°) transversal to the spatial sections is projected into a
geodesic Y(q°) of the reference space if and only if

10 The geodesic equations of a connection (1.8)
@q" |y da®dd _, . dd”
agz ~"ob g a& dg

are satisfied by the parametric curves g% (&) = constant, which simply represent points.
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O Lj=1;

and

(ii) by setting v(q)déf% >0

where ds is the arc-element of the reference metric g, equation

dlogV

+2H=FV?
dq°

holds.

(1.54)

Proof. For curves transversal to spatial sections the coordinate ¢° can be taken as
a parameter. In this case ¢°(¢°) = ¢° and dq°/dq’ = 1 and the components of its

acceleration are, see (1.45),

_ dg® dg’
A =F L
8ab dqo dqoa
. d dq¢¢ . dq* dg’ dg*
dq® dg° ab dq® dq° dg*’

The symbols A€ are the acceleration components of the projected curve 7. Passing to

the parameter s we find:

dq® d ds\?
A’ Fgabq q<_>

ds ds \dq°
dq* dq
that =1
atis, since g, — 5 a5 ,
A" =FV?
Moreover:
d dq .dq*dg® dq°
C=—1V I'S ——V“4+2HV
dq° ( d~> Hoggas 7T ds
dv dq° d (dq° dg*® 2
=— V—| — IS V 2HV
dq° a5 qu(d3>+ Ay A
dv dq° ,d (dq° . dq )
— — rs — V 2HV
dq" st d?(d? a5 ds *
Tidying up:

: d (dg* dg* dg? dv
A = V2 [— (i> T o i iN}Jr[ 2HV}
S
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First path: requirement 4 —> (i) and (ii). For Requirement 4 if 7y is a geodesic,
i.e. if the equations hold

) dq¢ dq¢
A=A, a=2% %y
dq° ds
which as seen above become
FV2=2,
d (dq .dq" dg’]  [av dg¢ ., dg (1.55)
Vi — | == |+ —= —= |+ |-—=+2HV | —= =A—=V
[d?(d3>+“b a5 a5 )" dq°+ ds ds
then ¥ must also be a geodesic of the reference metric g and ¢°(5) must satisfy the
equations
d (dg¢\ =~.dq"* dq®
— | —= Iy — =0 1.56
d§<d§>+ b G5 ds (1-56)

because s is an affine parameter. The same ¢¢(5) must also satisfy the second equa-
tions (1.55) which, taking into account the first (1.55), become

d (dq° cdq®dg® 1 , dlogV dq*
- re¢ — =_—|FV-— —2H .
d?( d3> @ g5 a5 v [T dq° ds

By subtracting equation (1.56) from these equations we find the equality

dq©
ds

.~ dg®dg® 1 5 dlogV
s —r1% — =—|FV°—
(e = Lab) ds ds VvV dg°

-2
whose first member is homogeneous quadratic in dg”/ds while the second is linear.
Given the arbitrariness of the d¢“ /d5s the two members must vanish and therefore the
following equalities must hold:

.= dlogV
c c 2

a=1Lap, FV°— i —2H=0.
They express the conditions (i) and (ii) of the statement.

Inverse path: (i) and (ii) =—> requirement 4. The equations of the I"-geodesics
(1.45) are

_ dq* dg’
AO = F _— =
A‘a ) g(/lb dqo dqo )
¢ qu c a b c c
AC = g’ d dq . dq° dq 2qu :/’qu
dq® dg® "~ dq® dq° dq° dg®’

Passing to the parameter s these equations take on the form (the calculations carried
out in the previous path are used)



30 Chapter 1 - Geometry of the cosmic space-time

FV?=2,

c a b 1 1 c (1.57)
4 (A pedddq’ Ly, dloeV ,p\da
ds \ ds @ds ds V dq° ds

By hypothesis I, = l:a‘b and equation (1.54) holds, so the system of equations (1.57)
translates into

FV2=2,

d (dq¢f\ = dq®dg® 1 dq*
& )4 A _[A—FV? )
d?(d3)+“bd3 ds v[ ]d3

These are the equations of the I'-geodesics. Question: is Requirement 4 satisfied?
That is to say: taken together, do these equations imply that the second ones, which
govern the projected curve, are equations of the I"-geodesics? The answer is affirma-
tive because if the second ones are the equations of the I'-geodesics then not only
the first member vanishes but also the second one, by virtue of the first equation
FV2=2A.m

Remark 1.20. In equation (1.54) it is assumed V > 0. This means that the two param-
eters ¢° and § are considered equi-oriented. o

Remark 1.21. Theorem 1.14 also shows that the equality I ; = l:a‘b does not depend
on the choice of reference space. It follows that, once the spatial co-moving coordi-
nates (¢“) are fixed, the Christoffel symbols I’ have the same expression in every
spatial section. e

Conclusion. The complete table of symbols of a cosmic connection, that is, of a
symmetric linear connection satisfying all the above requirements, turns out to be

[3=0, Ii=0, I3=0

A A ~ o (1.58)
I =H(q") &, Iy =F(q")gw(q), Ig =15

where the function F(q°) satisfying the equation (1.54) remains indeterminate. This
indeterminacy will be resolved with the intervention of a bridge postulate (Chapter
2). From (1.45) it follows that the equations of the geodesics in the parameter ¢° are

z dq* dg®
ab 55 T =M
dq® dq°
7 o | (1.59)
d dq ~2dq dq :(/'L—ZH)dq.
dq() dq() a dq() dq() dq()
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1.14 Ricci tensor of a cosmic connection

In this and the following sections we will complete the geometric picture regard-
ing the cosmic space-time by preparing some ingredients that will be needed in the
formulation of the dynamics of the Universe.

Theorem 1.15. The components of the Ricci tensor of a cosmic connection (1.58)
are

R00:—3 (H/+H2):_3aila”
Ry =0 (1.60)
Rabzﬁab+(F/+HF)§ab:(F/+HF+2E)§“I7

where K and Ry, are the curvature constant and the Ricci tensor of the reference
metric g.

Trace of the proof. Taking into account equation (1.53), the various components de-
fined by the (1.4) are calculated with the symbols (1.58). Note that R,y = 0 because
the Ricci tensor is necessarily isotropic, see (1.40).

1.15 Covariant derivatives and conservation equations

We denote by V, the covariant derivative associated with a cosmic connection. The
components of the derivative of any vector field V% are given by

V()VO - c%VO,

p VoVl =9Vl +HV?,
VoVP = 0,vP + 15 VY o (1.61)
VoV =9,V +F gu. Ve,

V Vb =9,Vb+Thve L H§P VO

So the divergence of this vector is
VoV = 0gV*+ T2V +3HV, (1.62)

If the vector field is isotropic then (1.38) applies, V° is a function of ¢° only and
V¢ =0, therefore:

V()VO - (%VO
V()Vb - 0
VaV* =9V +3HV" (1.63)
V.V =0
V.Vl =HV !

For a contravariant double symmetric tensor, from the definition
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— B 76 Y 7B
VoTPY = 9, TP + P17 4 TV TP
we get the following equations:
VoT% = 9,T®
V()TOC == (%TOC +HTOC

VT = 9,T +2HTb.
(1.64)
VT =9,T® +2F g, T"

VT =9, T" + LT + Fg T + HT™ 8}

VTP = 9,T" + THT% + LT + H (8P T + 85 T).
Therefore, the components of the divergence V T turns out to be
VaT® = V,T% 4+ V,T% = §T® 4 9,T® + [4T + F g,y T% +3HT®.
VoT® =V, T% +V,T% = 9,T% + HT*
+ 0, T + LT + T4 T + H (84T + 8L T)
= QT +HT™ + 9,7 + T4T® + THT + H(3T® +-T™).

(1.65)
If the tensor is isotropic then (1.39) applies, so from the previous formulas we get:
VTP =¢', V,T%=0
(1.66)
VT = (y' +2Hy) g
V.I® =0, V, " =(H¢+Fy)s?
be b 5dc | e 5bd (1.67)
VT =y (a8 + T g%+ I ) =0
VoT® =¢'+3(HP+F y)
(1.68)
VoT% =0

These last equations prove a property that will have a notable consequence in dealing
with relativistic cosmology (Theorem 2.7):

Theorem 1.16. With respect to any cosmic connection for any symmetric double co-
variant tensor T*P the four conservation equations Vol =0 are equivalent to a

single equation:

¢ +3(Hp+Fy)=0 (1.69)
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Bridge-postulates

As mentioned in the Preface, with a bridge-postulate we can transit from the geo-
metric territory concerning the structure of cosmic space-time to the territory of a
cosmic dynamics where the equations governing the evolution of the scale factor
a(t) will be determined.

A bridge-postulate has the task of finding, among the infinite possible ones, a
single cosmic connection, i.e., a single function F(g°) that completes the table of
symbols (1.58). A connection is the indispensable tool for defining the concept of
acceleration and also for writing field equations.

In addition, with the assignment of a connection, cosmic time ¢, which has so far
remained an indeterminate parameter, will acquire physical meaning. In other words,
it will be possible to define a standard clock with which to measure it.

2.1 Newtonian cosmic connection

Newtonian bridge-postulate. Cosmic time t is an
affine parameter for free particle histories.

In a cosmic connection time ¢ is an affine parameter of galactic histories (Re-
quirement 2). This postulate extends this property to free particles.

Theorem 2.1. (i) There is only one cosmic connection satisfying the Newtonian
bridge-postulate and it is characterized by the condition F = 0. (ii) The equations of
the transversal geodesics to the space sections are

c a b c
4 dq 175)”1‘1 da” _ _ (t)dq
dt dt dt dt dt

@2.1)
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Proof. (1) Let us rewrite equations (1.59) of the geodesics of a cosmic connection
taking cosmic time ¢ as parameter,
a b

§b—dq —dq =2k’

Cdt dt ’

d d¢° =~ dq* dg® ( dq

DAL | o 48 (G ) 4O
dt dt P dt dt @)

The postulate is equivalent to the condition A = 0 and the first equation shows that

this is satisfied if and only if F = 0. (ii) The second set of geodesic equations reduces
to

C

dd¢¢ ~. dqg*dg’ o dg°
T s e R Y ¢ .

de dt % dr dr KH(T) 5,
By virtue of (1.53) H(¢) = kH(q°), we get equations (2.1). m

The space-time geodesics of a cosmic connection are projected into geodesics
of the reference space (Requirement 4). Equations (2.1) are the equations of the
projections of the space-time geodesics of free particles. At the left hand side we
find the a“ components of the acceleration with respect to the cosmic time ¢ of a
moving point in reference space. The right hand side can then be interpreted as a
force
dq¢
dt
acting on this point and directed according to its velocity, concordant for H(t) <
0, opposite for H(¢) > 0. This fact is not in agreement with classical Newtonian
dynamics where, by principle, a free particle (i.e. not submitted to external stresses)
moves in rectilinear and uniform motion. Concordance occurs for H = 0 that is, for
a(r) = constant. This is the case of a static Universe.

f©=—2H()

2.2)

We call this connection Newtonian since a cosmic spacetime equipped with this
connection is a generalization of the Newtonian space-time of classical mechanics,
where:

1. The manifold M is an affine four-dimensional space.
2. The spatial sections are Euclidean three-dimensional affine spaces.

3. The cosmic world-lines are parallel straight lines and represent the motion of
the so-called fixed stars. The congruence of these lines is an inertial reference
frame, as well as any other congruence of parallel lines transversal to the folia-
tion S;.

4. The world-lines of the free-falling particles are transversal straight lines (law of
inertia).

5. The cosmic time ¢ is the absolute time.

6. The expansion factor a(r) is constant and equal to 1, and the Hubble parameter
vanishes: H = 0. Consequently, if the space-like coordinates are Cartesian, then
all symbols I'" JB vanish. The cosmic connection is flat and coincides with the

canonical connection of an affine space.
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spatial sections:
Euclidean affine

3-spaces World-line of

Fixed-stars a star P

world-lines:

congruence
of parallel
straight lines
S
S B

M: affine 4-space

~

R

Fig. 2.1. Newtonian space-time

A Newtonian connection opens the way to the development of Newtonian cosmic
dynamical models.

2.2 Peculiar velocity of a wandering particle

In the next section, a second bridge-postulate will be proposed. To do this we need
some premises. Let (¢°(¢),¢%(¢)) be the parametric equations of the history y(z) of
a wandering particle. When at time ¢ it is passing through a galaxy B; its bf cosmic
velocity is the vector V with components

dq’ dqg°
vl = [W ar ]

(2.3)

where the vector

dq®
)=
0= ||
is tangent to the spatial section S;. This is the velocity vector of the particle nearby the
galaxy B; interpreted as a physical reference space and defined by the three vectors
associated with the coordinates (¢“), see Figure 1.7.

We call the length of this spatial vector the peculiar velocity of the wandering
particle:

def

dg® dg®
Vpec(t) = 7 29

dt dt

8an(1) 2.4
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Because of what was said above, this is the relative scalar velocity in the reference
B,. By virtue of the factorization equation (1.26) it takes the form

dg" dg"
dt dt

Vpec (1) = a(t, 1)\ | 81an (2.5)

11, being the reference time of the scale factor and g4 the components of the metric
tensor of the reference space S,
If we consider the arc-element d's of the reference metric gy, defined by the equa-
tion
dq* dq" B
8tab o A5
then the peculiar velocity (2.5) takes the simple form

1

3

Vpee (1) = al(t,ty) — (2.6)

2.3 Relativistic cosmic connection

Relativistic bridge-postulate. There exists a cosmic time t and there
exist free particles whose peculiar velocity with respect to this time t
is a universal constant c: vpec(t) = c.

By virtue of (2.6) equation vpec (1) = ¢ is equivalent to

ds
a(t,ty) p7iald 2.7)

Although with abuse of language, we will call photons these particles.

Theorem 2.2. The existence of photons is compatible with a cosmic connection if
and only if

F(¢") = —aa (2.8)

Proof. By the relativistic postulate a photon is a free particle and by definition of a
free particle its history is a geodesic of the cosmic connection. By Requirement 4
this is projected onto a geodesic of the reference space and furthermore, by Theorem
1.14, along this geodesic equation (1.54) holds:

dlogV
dq°®

der 45
e

[] +2H(q") =F(¢")V*, V(q")
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By virtue of the expression (2.6) of the peculiar velocity and of equality vympec () = ¢
following from the postulate we have

1ds 1 c

Vpec = ——

ds
V = — = —
d¢® xdt «xa
Hence, ¢ and Kk being constants,

/

dlogV  dloga  a

dq° dq° a’

so that [+] becomes
2

a c
—— 42H(") =F —.
—+2H(g) =F 5

Since H = d’'/a, by the definition (1.52), the result is

From here follows (2.8). m

Recalling the table (1.58), it follows from this theorem that

Theorem 2.3. The relativistic bridge-postulate determines a unique relativistic cos-
mic connection whose symbols are

2 B (2.9)

Along any history parameterized by cosmic time ¢ these symbols should be re-
garded as functions of ¢. Since

we have

K o —— (2.10)
2

With these symbols, the equations of geodesics with parameter ¢
g |y da® deP _, da”
dt2 OB dr dt dt

break into the system
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@q" o da”ddb _, dq’

Y=0 = +TI

di2 B ar dr T adr
d*q¢ . dq® dqP dg°
= FL _— = .
r=C= T Tl g dt
P K dgtdd de
) a2 8ab g Tar ~ "ar
d’q¢  ~.dq"dq® 2adq dg° dq*
Tt — = A
dt dt dt Ka dt dt dt
K . dq®dqgP
0 Sadgy —— —— = AK,
Since di:K:> szc dtadtb o .
at 4| peddda’ ,adet_, dgt
dr? " dr dr a dt dr’
aa _ dq®* dg® A
5 8ab - =AM,
— Qg drd N (2.11)
PE o dd dd (L a\dd
ar? " dr odr a) dt’

The first equation shows that it cannot be A = 0. This means that

Theorem 2.4. Cosmic time is not an affine parameter for transverse geodesics, so
neither is it for photon histories.

Further properties.

Theorem 2.5. The geodesic equations of the relativistic cosmic connection (2.11)
reduce to the three equations

dzqc ~. dqa d_qbi

dq°
aZ e g ar T —H(1)

dt

2.12)

d
Proof. Since vpec = a d—j, from the first equation (2.11) we derive the multiplier:
: a b 2 . 2 . .
jo g da0dq’ (dS\T_ad (dsAT a4 o 0 d
28705 a5 \ar 2 \ dt act ¢ a
Substituting this expression into the second equations (2.11) we find (2.12). m
Remark 2.1. The auxiliary velocity kK does not appear in these equations. e

Theorem 2.6. If t, = +oo and if the scale factor a(t) is unbounded for t — oo then
the photon histories asymptotically approach the cosmic fluid histories.
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Proof. Since equation (2.7) holds for any ¢, the limit limy_. ;. a(t) = +oo implies

This means that in the cosmic monitor, the trace of a photon tends asymptotically to
a fixed point. m

Remark 2.2. This theorem shows a kinematic property of photons independent of the
choice of dynamical postulates. e

Additional properties of the relativistic cosmic connection concern covariant
derivatives. From the general formulas (1.66) and (1.69) it follows that

Theorem 2.7. (i) With respect to the relativistic cosmic connection (2.9) the covari-
ant derivatives of an isotropic vector field are

V()VO == (%VO, V()Va - 0, va() == 0,
(2.13)

/
v,V — %V“ 5¢.

(ii) The divergence is given by

/
VV%* =90 +3Lyo (2.14)
a

(iii) For each symmetric contravariant two-tensor TP the four conservation equa-
tions VT =0 are equivalent to the single equation

2
o +3d (%—l—f—zal]/) ~0 2.15)

2.4 Relativistic cosmic metric

Here we discover that the relativistic connection is the Levi-
Civita connection of a Lorentzian metric in cosmic space-time.

Theorem 2.8. The relativistic cosmic connection is the Levi-Civita connection of the
Lorentzian metric

o B o Kd o,
8apdq”dq” = a|dq —C—zgabdq dq (2.16)
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8oo = &
gOaZO

K2
gab:_ac_za 8ab

where o is a non-zero constant factor and ¢° = xt.

Remark 2.3. Observe that, by virtue of the factorization (1.26), the spatial compo-
nents g4, do not depend on the choice of the reference space, i.e., on the reference

time of the scale factor. e

Remark 2.4. By fixing o« = —1 we obtain the Lorentzian metric

2
K ~
Sapdq®dgP = —dq” + = a*gapdq“dq”

i.e.
8oo = -1,
gOa :Oa

K
8ab = C_za 8ab-

2.17)

Proof. According to Theorem 1.8 the components of any isotropic metric tensor must

be of the type
gw = a(q’),
8ap: { 8oa =0,
8ab = B(4") 8ar(q):
ie.

8apdq®dqP = adq" + By dq*dg’.

(i) Computation of the first kind Christoffel symbols.

FaB,V: %(%gﬁy—l-c?ﬁgya—c?ygaﬁ).

21—60,7/ = aogoy+ t%gyo - aygoo = {
21,y = dogby + gy — Iygop = {

2Ly = 0u&by + O&ya — Fy8ab = {

Non-identically null symbols:

21500 = 90800 + o800 — Fogoo = '
21506 = 9o&oa + F08a0 — Fugoo = 0.

2T, = 90&io + Ip&oo — ogon = 0.

(2.18)

2 = 90&be + Ip&co — 9c8ob = B’ &he-
2T0p.0 = 9agbo + Ip&oa — 98 = — B’ an-
21—(11[),0 = 0u&be + 8ca — Ocab = Zﬂﬁ;b,c-
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{E)O!o—%a/, {l—z}b,o——%ﬁ/gab,
E)b,c = %ﬁlgbw L:zb,c = Bﬁb,c-

(i1) Computation of the second kind Christoffel symbols. I'’ ayﬁ = g75 Iog s

g =a"(¢"),
g q g =0,

g =B(¢") g (q)-

rr ygl_, {171%—805171;),5—800171;),0——%061ﬁ’§ab.
ab— 8 ab,6 — ) ) o _ -
=8 L5 =8 Liva =B 8 BLopa = I,

Summary overview:

8avs Loy =155(9)

B
(04

These symbols coincide with those of the relativistic cosmic connection (2.9)

1?)8:0, 1—1;?):0’ E)(L;:O’

! 2
a K ~
- . o I~ N
Li=28, Ih=—5adgm Ij=I5)
if and only if
o = constant
1 li li
[«] { z(logB) = (loga)
2
K
1 ,—1pR/ /
—50 = —aa
2 B 2
Hence,
o = constant o = constant

[*] = a’B= consztant =y — ) B=yd i

K K
B'=-2a—ad B'=-2a—ad
c c

41
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O = constant o = constant

, . o = constant K2
—{ B’ =2vaa = . K2 = V=Tes
K2 2yad =-20—aa 2
B'=-2a—ad c B=yd®=—0a—ad
2 =7a o —a’.

Comparison with (2.18) proves (2.16). m

Theorem 2.9. In the metric (2.17) (i) the cosmic fluid histories are time-like geodesics
orthogonal to the spatial sections S; and (ii) the photon histories are null (light-like)
geodesics.

Proof. (i) For the first requirement of a cosmic connection the cosmic fluid histories
are geodesics of the relativistic connection, hence of the cosmic metric. Since in co-
moving coordinates gy, = 0, these histories are orthogonal to the spatial sections so
they are time-like. (ii) For each history parameterized by ¢° we have

dg* dg® _ | K . dg" dg’
8ap dq® dq° ) 8ab dq® dg° 0.19)
| K oy dgdd (ds 2 L K 2 '
= - —>a V= =\ 7| = — —a | ——
28T s dq° 2 dq°
. dg® dg’ .
being g VT 1. On the other hand, we have seen that the equation vpec (1) =c,
s ds

which by postulate assigns to a photon a constant peculiar velocity c, is equivalent to
equation (2.7), which in turns can be put in the form

ds ¢
dt alt,ty)
ds ds
Since we have defined ¢° = kt, it follows that L4 L, and we see
dg® xdt xa(t,t)

that the last term in (2.19) vanishes. This proves that the curve is light-like. It is a
geodesic because, by postulate, a photon is a free particle. m

2.5 Ricci and Einstein tensors

The components of the Ricci tensor of the relativistic cosmic connection are

K2 =\ ~
= (C—z(Za’z—i-aa”)—i-ZK) 8ab

ROO = —3 aila”, Ra() = 0
n Kz 2 AN
Ry =Ry + P (2a +aa ) gab (2.20)
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These expressions follow from the (1.60) by posing

S}

K

0 / / 12 i
H(@)=—, F=-—5ad, F :C—Z(a +ad).
We can calculate the mixed and contravariant components of the Ricci tensor by
raising the indices of the covariant components (2.20) by means of the contravariant
components of the metric tensor (2.17):

gOO =1
g®F. L 8" =0, (2.21)
1
ab > = sab
£ e
The resulting expressions are
7
R\=3—, R.=0, R:=0,
N ” " sb
Ri=— pRa—l-(Za +ad") 8 (2.22)
=L vaa 125 k| 8
= |2d" taa 2 )

Roo__3a_”’ Raoz()’
a
2 2
1 ~ -
Rab — % — [% ab | (2a’2+aa”) gab] (2.23)
a
2 2
ce 1 ” " C = ~up
—@7[2“ tad'+ 25K g

a | x

6 -
== (a’z—i-aa”—i- C—2K>
a K

Along any curve parameterized by cosmic time ¢ all tensor components must be
expressed as functions of 7. Since

2 ~
Rngg _3 [C—2R+2 (a’z—i-aa”)}
(2.24)

a
/

a =—,
K

we get:
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RSZFZ, Rg:(), Rg:(),
R = [CZRZ+(2a2+aa') 55]
== [2a2+aa'+2c2ﬂ 8b
a
ROO___2 , RaOZO,
A1 ~ -
R =5 [CQ R 4 (2% +ad) g“"}
a
2
1 ~
= %7 [2d2+aii+262K} 3.
a

3 1a5 2 6
R= o [CRH2 (@ +ad)| =

(a2+aa+c21?)

It follows that the contravariant

components of the Einstein tensor

GoB défRaB - %Rgaﬁ

are
2
GOO—%(a’Z—l-C—zE), G =0,
a K
2 2
b_ __C 2 n 2\ sab
G — g (a +2aa +K K)g“

G —__<
K*

2

%) .. 2 >\ ~ab
p (a +2ad+c K)g“

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)
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The auxiliary constant K, which has the dimension of a velocity, was in-
troduced to define a length-dimensional coordinate q° = Kt as a substitute
of cosmic time. Its numerical value is indeterminate. So far this constant
has proved to be a useful tool, especially in checking the dimensional ho-
mogeneity of many equations. On the threshold of relativistic dynamics it is
quite natural to place this constant equal to the speed of light c:

K=c¢ qozct

The cosmic metric then takes the expression

8apdq®dqP = —?dt* +a* g dg dg” (2.30)

2.6 Sub-luminal particles

We call sub-luminal particle a wandering particle whose history ¢%(¢) is time-like
in the metric (2.30). Every tiime-like curve admits a parameter 7, called proper time,
such that

dg® dg?
—_— = 2.31
SaB - dt dt c ( )
The four-dimensional vector
d o
v(r) % [%] (2.32)

is called the proper velocity or absolute velocity of the particle.

Theorem 2.10. Sub-luminal particles have peculiar velocity lower than the univer-
sal constant c.

Proof. Let us recall the definition of peculiar velocity (2.5)

dq’ dq
dt dt’

Vpec (t) gab
From (2.31) it follows that

dg* dg* dq* dq* (dt)

—=8ap g g =8B g g \an

dg*\* . dqt dgb| (di\* Ve \ [ dt
= |- (=L (LY =2 -1 .
l (dt) T8 | \ae) T€ T2 )\
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2 2
v dt

<1Lvpec<c.m

2

Vpec

This result shows that >
C

Remark 2.5. Equation (2.33) is equivalent to

dt Vpee
- _ 2.34
dt 2 ( )

This equation is similar to the well-known formula that in special relativity links
proper time and relative time along the history of a massive particle. o

Remark 2.6. Galaxies, as particles of the cosmic fluid, have zero peculiar velocity so
they are sub-luminal particles with T = ¢. Consequently, their absolute velocity is

dg® dg*  dg* [V'=¢,
yodtdd 49" 49 { (2.35)

dt — dr  “dg¢ | vye—o.

Applying (2.14) we see that the divergence of this vector field is given by

VoV®=3cH (2.36)




3

Relativistic cosmic dynamics

3.1 First dynamical postulate: Einstein equations

Having crossed the relativistic bridge-postulate, our goal is to formulate the physical
laws governing the evolution of the scale factor a(t). We know that cosmic spacetime

is endowed with the metric (2.30)

go=-1, 840=0, guw= az(t)gab(®

gapdq®dqP = —*di* + & (1) gy dg dq”

with contravariant components

For now no particular assumptions are made about the reference time 7.

3.1

3.2)

stein’s field equations

GaB +Agaﬁ :xTaB

def 8 TGy

= A

where Gy is the Newtonian gravitazional constant.

First dynamical postulate. The space-time metric is determined by Ein-

where A > 0 is the cosmological constant, and the constant ) is defined by

(3.3)

(3.4
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In compliance with the isotropy principle, the components of the tensor TP
must be of the type (Theorem 1.8)

T% = ¢ (¢) = function of 7 only
T . {70 =0 (3.5)

T% = y(t) g* = function of ¢ times g*’

To make this first postulate applicable, it is necessary to translate Einstein’s equa-
tions into differential equations in the scale factor a(t). The derivatives with respect
to ¢t will be indicated by a superimposed dot.

Theorem 3.1. (i) The four conservation equations Vo T*P = 0 are equivalent to the
single equation

ag+3a(p+a*y)=0 (3.6)

which in turns is equivalent to

(pa®) = =3a*ay (3.7)

(i) Einstein’s ten equations (3.3) are equivalent to the two differential equations

a o, .
a2 3¢ (A+x9)—-K (3-8)

25 =al}A—x(ya*+19)] (3.9)

(ii1) Equation (3.9) is a consequence of (3.8) and of the conservation law (3.6).

Proof. (i) Equation (3.6) is the translation of (2.15), item (iii) of Theorem 2.7, in the
change from the parameter ¢° to the parameter ¢, with kK = c.

(i1)) Combining equations (2.29), (3.2) and (3.5) with K = ¢, Einstein’s equations (3.3)
reduce into a system of two equations

23 E (a2+czf) —A=x9¢,

coa

1 A
- (a2+2aa+c2K) o=

2q

C

that we rewrite in the form
@t =2 [%az (A +X¢)_E} ,

2ai+a*+cAK = cd? (A —xwaz) .



§3.2 - Second dynamical postulate: perfect cosmic fluid

Let us substitute the first equation into the second one:

a? = ¢? %az(A—l-Z(P)—E
— i} = %
2ai+é [%az(AHch)—K +PK=ca* (A - yad)
a2 =c32 %az(A—l-Z(P)—K
=
2ai+5Pd (A+29) = a* (A —xya?)
2= 1 (A+x9)-K (3.8)
— =
(3.9)

i=4Ca3a—gz (va+19)]

(ii1) Differentiating of (3.8) we get

2ad . . 2d
—F =jaaAtx9)tiadrd = S = %a(A+x¢)+%a2x%

c2
| y
(6= §20=—(0+ay) = T =3a(A+x0)~ax(9+a*y)

= (39). =

49

sor of the cosmic fluid.

Remarkable fact: this theorem establishes the relativistic dynamical
equations of an isotropic Universe valid for any isotropic energy ten-

3.2 Second dynamical postulate: perfect cosmic fluid

The following postulate is devoted to specifying the characteristic functions ¢ and y

of the energy tensor.

ergy tensor

T =2 (e+p) VOVP 4 pgP

equation

8ap VOV = -2,

(1) is the energy density and p(t) is the Kinetic pressure.

Second dynamical postulate. The cosmic fluid is a perfect fluid with en-

where V% is the absolute velocity of the fluid satisfying the normalization

(3.10)
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The physical dimensions of the elements involved in Einstein equations are given
in the following table (see also the tables in §1.9).

Table 3.1. Elements of Einstein equations

Quantity Dim Note
A L2 [a]
xTf | L [a]

T | ML!'T-2 | [b]

2 M-IL=IT2 | [c]

Gy ML3T—2 [d]

P ML-IT-2

€ ML-IT-2

[a] In accordance with the established conventions the coordinates g are L-dimensional,
so the components of the metric tensor g5 and g"‘B are dimensionless and therefore

Dim (R*F) = L2, It follows from Einstein’s equations that Dim (A ) = Dim (y T%F) =
L2

[b] Equations (3.14) show that Dim (7%) = Dim (&) and Dim (T%) = Dim (p). It
follows from the table 1.2 that

Dim (&) = Dim (p) =ML~ ! T2,

[c] Dim () = Dim (x 7%) /Dim (T®F) = L-2/ (ML~ T—2).
[d] Dim (x) = L=# T*-Dim (Gy) =
Dim (Gy) =Dim (y)L* T * =ML T2 T * =M113 T2,

Theorem 3.2. With an energy tensor of the type (3.10) the dynamical equations (3.8),
(3.9) and the conservation equation (3.6) become respectively
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S =i (A+re-K (3.11)

p

S =4a3a-z(p+1o)] (3.12)
at+3(e+p)a=0| < | (ed’)’ =-3d%ap (3.13)

Proof. The absolute velocity of the cosmic fluid is given by (2.35). So from the
definition (3.10) it follows that

TOO — 8, T{/lO — 0’ Tab — pgab — pafzzgvab (314)

Comparison with (3.5) shows that the characteristic functions are

o=e(r), w=a>(t)p(). (3.15)

We then apply Theorem 3.1. m

Remark 3.1. Equations (3.11)-(3.12) are in the literature referred to or attributed to
Friedmann and Lemaitre. For a detailed discussion on this topic see §3.4. o

3.3 Third dynamical postulate: state equations

The three dynamical equations (3.11), (3.12) and (3.13) are equivalent to two inde-
pendent equations involving three unknown functions: a(t), €(¢) and p(¢). Thus, in
order to construct a self-consistent model, we need additional equations representing
the physical characteristics of the cosmic fluid.

Third dynamical postulate. (i) All the components of the cosmic fluid have
their own density & which, with their sum, contribute to form a total energy

density £(¢):
a1

(ii) Each component €; generates a pressure p; proportional to it according

to an equation of state
@17

where the dimensionless constant w; is called the state parameter of com-
ponent i.

Continued on next page.
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Remark 3.2. Recall that p; and & have the same dimension: Dim (¢) = Dim (p) =
ML~=! T2, Thus the constants w; are dimensionless. ®

(iii) The total internal pressure is the sum of all pressures

(.19)

(iv) Every couple (&, p;) satisfies the conservation equation (3.13)

(ga)" +3d%ap;=0

Remark 3.3. All the above equations are supported by arguments reported in astro-
physical articles and books. e

Theorem 3.3. Each component € evolves over time according to the law

&lt) = —; £i(ty) (3.19)

- a 1+Wi)(t, tﬁ)

Proof. (§a®)" +3a*ap;=0 < (gad*>a)" +3d*aw;& =0
— (gd?)" a+&a*a+3d’awie; =0 <= (ga®)" a+¢&a*a(1+3w;) =0

(gd%)"

—
a2

F(1+3w) 2 =0
a

<= log(g;a®) +loga't3"i =logk (k= constant)

k

e gl0HW) — | — &(t) = m'

Valueint =t;: k=¢(t). m

Remark 3.4. 1t is a useful exercise to verify that equation (3.19) does not depend on
the choice of reference time:

_ &) o &l
&)= a(l‘,l‘u)’t_tb = &) = alints) [1]
o &) e &)
= &) = a(t,ty)  a(t,t,)a(t,,t;) [7] a(t,t,)’
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3.4 Comments on Friedmann and Lemaitre equations

Friedman’s and Lemaitre’s equations are widely cited in cosmology texts, where,
however, they appear written in various forms, which not only differ in notation but
are sometimes not equivalent to each other.

To avoid confusion, as far as Friedmann’s equations are concerned, one should
refer to the dynamic equations that appear in the original work [10] Uber die
Kriimmung des Raumes by A. Friedmann (1922). They are written exactly as fol-
lows:

dR
R?* 2RR' QS
@ mr e tm 0| | T d
2 a2 2 (3.20)
(5) 3R +3c PR R”*d—R
R R TrOP T

where p is stated to be a mass density and s eine Konstante. The coordinate x4 is
time-dimensional and the signature of the metric is (— — —+). These equations come
out from Einstein’s field equations. The comparison with our Einstein equations.
R%B (A- %R) g% = x T shows a difference in sign in the second member.
This is due to the different signatures of the metric.

Looking at the components of the energy tensor, we observe that
(1) Friedman takes into account the cosmological constant,

(ii) Friedman considers the ‘dust’ model for galactic fluid (kinetic pressure p is not
present).

(iii) Friedman considers space curvature positive.

In our approach, we have seen that the Einstein equations consequent to the en-
ergy tensor (3.14) reduce to the differential equations (3.11)-(3.12),

P
ol %az(A +x¢€)—K;,

- (3.21)
a

3= la [%A—x(p—i—%s) .

Let us compare these equations with Friedman’s equations (3.20). To do this we
rewrite them in the form

[4] 2RR"+R*+c*—AR*=0,
(3.22)

5] R*+c2— L (A+3xPp)R*=0.
We subtract member to member [4] — [5]:
2RR'—AR*+ % (A+3c?p)R* =0.
Since R # 0, we have 2R” — 2 AR+ 1 5cc*p R =0, that is

R'=1R(2A—xcp). (3.23)
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dxqs =dt R =a
R R — (3.24)

we find equation d = éa (21 - %czp) which coincides with the second equation
3.21) with p =0,

If in (3.23) we put

12%0(2/\—%8),

2

provided that 24 — »2¢?p = ¢? (2A — x €), that is
A=c*A, xp=ye. (3.25)

In turns, with the substitutions (3.24),the second equation [5] in (3.22) becomes

i = % (2 + zczp) a®— .
Because (3.25), d> = % c?a? (A + y €) — %, this equation coincide with our first equa-

tion (3.21)
2
a
ol %az (A+xe)—K;

provided that Ky = 1. This proves item (iii).

As far as Lemaitre equations are concerned, the main reference should be the
article [12] Un Univers homogene de masse constante et de rayon croissant rendant
compte de la vitesse radiale des nébuleuses extra-galactiques (1927). The gravita-
tional field equations are there presented (without demonstration) in the form

R* 3
= — 3.26
R' R'2 1 dt’ ( )

where A is the cosmological constant, k is the ‘Einstein constant’, p is the density
of the ‘total energy’ and R is ‘le rayon de I’espace’.

A third equation is then introduced

dp R

4) S +3g(pP+p)=0 (3.27)

where p is the ‘density of radiant energy’. This equation is claimed (without demon-
stration) to be equivalent to the four momentum energy tensor conservation equa-
tions. It is in full agreement with the conservation law (3.13) aé+3 (e+p)da =0by
settingp =€and R =a.

Therefore, the ‘rayon de I’espace’ R of Lemaitre is actually the scale factor a,
which is a dimensionless quantity. It follows that the first members of the Lemaftre
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equations (2) and (3) are dimensionally incongruent, so it becomes difficult to exam-
ine their relationships to our dynamical equations (3.11)-(3.12). Indeed, many of the
equations written by Lemaitre suffer from this inconsistency, mainly because of the
absence of the speed of light, probably set equal to 1. An example is given by the
equation of a lightray

2 dt
20 G—G:/—
(20) o2—o01 R

where the first member has the dimension of a length because it is understood to be
the difference of two positions in space, while the second member is a time (if R is
dimensionless). This equation is the archetype of our equation (5.2), §5.2,

B dt
dAB(l‘ﬁ) = C/

TeA a(t7 tﬁ)

which gives the distance dap(t;) of two cosmic bodies A and B in the reference space
S’t’ with 7.4 the time of emission from A of a light ray and ¢, the time of reception
from B.

3.5 Fourth dynamical postulate: matter and radiation

From the third postulate and Theorem 3.3, we can begin a path toward the con-
struction of many-component models of the Universe, already attempted by some
authors but without clear results. With a fourth postulate, we restrict our interest to a
simpler two-component model: matter and radiation.
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Remark 3.5. As already claimed in Remark 3.3 all the above equations are supported
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Fourth dynamical postulate. (i) widespread in the Universe there are two
fundamental energy densities:

E=€&,+ & (3.28)

With two distinct characteristic properties:

(ii) the matter density &, that does not generate pressure,

pm(t)=0, ie w,=0 (3.29)

(iii) the radiation density &, (¢) that generates pressure,

&(t) iew =1 (3.30)

Lal—

pr(t)=

(iv) The matter density is in turn the sum

En =&t & (3.31)

of a baryonic energy density &, and a cold dark matter energy density
.

(v) There exists a date foq of matter-radiation equilibrium in which the
two densities &, and & have equal value

Em (teq) = Sr(teq) (3.32)

We call the cosmological model based on this dynamical postulate the
matter-radiation model (MR-model). The existence of a time teq of matter-
radiation equilibrium will play a crucial role.

by arguments reported in astrophysical articles and books. e

Remark 3.6. In addition to the energies of mass and radiation, cosmologists consider
the cosmological constant A to be representative of a third type of energy, the dark
energy, which generates negative pressure within the cosmic fluid. We do not adopt
this interpretation in our approach because, in compliance with our postulates, A is
a universal constant while the densities of matter and radiation energies depend on

time. o
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By virtue of equation (3.19) the densities &,, and &, evolve in time according to

the laws

S
en(t) = 23 (;n,utu)

Sru
&(t) = a4(l‘,tu)

(3.33)

(3.34)

Consequently, the equality between matter density and radiation density (3.32) turns

out to be equivalent to

Ey = a(teq, l‘u) Emt

(3.35)

Furthermore, by virtue of the equations (3.11), (3.28), (3.33) and (3.34) the scale
factor a(t, ;) referred to a generic time #; is governed by the dynamical equation

2
a(tty) | o XEmy | XEr
=3 t,ty) A —K
R S AT
Dividing by a?, this equation becomes
H?(1) 1 X Emt xe: | K
c? 3 a(t,ty)  a*(t,ty)]  d2(t,ty)

(3.36)

(3.37)

For t = t; we have the normalization condition a(fy,#;) = 1 and we obtain the spa-
tial curvature Ky = K(t;) at the reference time expressed in terms of the densities

evaluated in #;:

HZ

K =1 [A+x (g +82)] —C—g

3.6 Dynamical equations of the MR-model

(3.38)

‘future’. Hard task indeed.

So far the scale factor has been referred to a generic time ty. However, we should
note that the estimates of the various cosmological entities are resulting from
measurement made in the present epoch only, and that it is from these estimates
that we have to infer the evolution of the Universe in the ‘past’ as well as in the

Therefore, from now on we will take the present time ¢, as the reference time.

Astronomers are nowadays able to measure the following cosmological param-

eters denoted by Q,:
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2 2
def | € 3H
darkenergy: Q=1 -—A <<= A="220,
3 H? c2
0
2 2
. def | € 3H;
matter : £, = §H—02xgm0 = Y Emo = C_zgm
2 2
.. . def | C 3H0
radiation: £, = 3 H—Ozxgm = Y& = C—zgf

. def
spatl al curvature :

%0, 0,1

All these parameters are dimensionless.!

(3.39)

(3.40)

(3.41)

(3.42)

Theorem 3.4. In the MR-model, the evolution of the scale factor a(t,t,) is governed

by equation

a* :Ho2 [.QA az—i-.Qma*l +.Q,a72] —CZKO

(3.43)

where H, and K, are the present day values of the Hubble factor and of the spatial

curvature, which are related to each other by equation

HZ
Ky = C—Q(.QA +Q,+02,—1)

(3.44)

Remark 3.7. By virtue of (3.44) the dynamical equation (3.43) takes the alternative

form

a® = H? [1+.QA (@=1D)4+Qu@ ' —1)+Q,(a2-1)

(3.45)

This form has the advantage that it does not involve directly the spatial curvature K,
which, according to current measurements, is so ‘small’ that it is even believed to be

null. e

2

2
def 1 € def 1
A, Qun=3z-—5XE
3 2 s m 3 2 1m0 >
H; H;

Proof. Substitute Q4 =

a = HO2 [.QA a2+ Qpa! +.Q,a’2} — 2K,

def | ¢

2[1 ¢ 2,1 ¢ 1,1 ¢ 2 2
=H;|35—=Aa*+35— XEmwa —i———x&‘ma]—c K,
"1 Hg > Hy > Hy

= %cz [A az—l-x&‘moa’l +x&‘,0a’2} —CZKO

UIn [4], p.37, Qk is defined with opposite sign.

'S st in (3.43):
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dz (ta tO)
2

— :%[Aaz—i—xsmoa*l—i-xsma*Z — K.

c
Then compare this result with equation 3.36 re-written for 7y = 7). m

3.7 Relationship between matter and radiation densities

The existence of a time #.q in which the densities of matter and radiation have equal
value — fourth dynamical postulate, item (v) — plays a crucial role in the theoretical
and numerical analysis of the MR-model.

Theorem 3.5. The values of the cosmological parameters €2, and Q, are related by
the equation

Q,
Q= eg Q= ——— 3.46
r = deq2em 1+Zeq ( )
where
def 1
leq = ateqyto) = T (3.47)
eq

is the scale factor at time teq and zeq the corresponding redshift.

Proof. As will be seen in §6.1, the redshift z is related to time ¢ (interpreted as emis-
sion time) by equation (6.7)

=14z 3.48
aw) (349
By virtue of (3.40) and (3.41),
2 2
Qm:%H_OZXSmOa -Qr:%H_OzxgrOa

it follows that

o s _,

Q. eu(ty) o

A remarkable consequence of equation (3.46) is:

Theorem 3.6. In the MR-model the evolution of the scale factor with reference time
1y is governed by the dynamical equation

,2_1
A =H? {144 (@®—1)+Q, (a1—1+“ )] (3.49)
1+Zeq

where only the four primary data are involved:
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H, present time value of the Hubble factor,

Q4 dark energy parameter,
(3.50)
€, matter energy parameter,

Zeq redshift corresponding to time ey

In fact, thanks to (3.46) the dynamical equation (3.45) is transformed into (3.49).

As mentioned in the Preface, towards the end of the 1990s an agreement was
found called concordance cosmology with which the ACDM - Lambda Cold
Dark Matter model was founded, briefly called the standard model, whose dy-
namical equations

a> = H? [.QA >3 (@, + Q) a '+ Qa2+ Qk (3.51)

involve five constants:

w  parameter of the dark energy equation of state,
€, baryon density parameter,

Q. cold dark matter parameter,

Q, radiation density parameter,

Q K curvature parameter.

By setting
w=—1

Q4+ Q. = Q, (3.52)
H? Qx = - K,
we find equation (3.43) and fall back to the MR-model. However,

The MR-model cannot be considered as a special case of the standard model
for the following reasons:

1. The MR-model is based on postulates clearly expressed in mathematical
terms.

2. The MR-model requires knowledge of only four primary data (3.50).
3. In the MR-model the spatial curvature is positive (Theorem 3.7, §4.2).

4. The estimates of other relevant cosmological entities that are deducible
from the four primary data are in excellent agreement with those obtained
from the most recent observational data.

5. The scale factor curve a(t), whose analytical and numerical expression
will be given in §4.7 and §4.9), collimates excellently with the profile ex-
posed by Riess in his Nobel lecture [20].
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3.8 The problem of the spatial curvature

According to the most recent observational data, the curvature parameter (3.42) Qg
turns out to have such a small value that one is inclined to conclude that the Universe
is flat. Such a conclusion, however, may be erroneous. In fact we know that in a
dynamical equation to put a small parameter equal to zero can completely change
the behavior of the solutions.

An illuminating example of this misunderstanding is given by the historical de-
bate about the cosmological constant A. Because its value is in fact very small, for
years and years it was felt that it could be neglected and thus omitted from Einstein’s
equations.

Such an omission, however, is an operation incompatible with the very principles
of general relativity that imply the presence of this constant.

Finally, it has only recently been realized that, even if of very small value, A
causes over long timescales an acceleration of the scale factor growth. In §4.13 of
this chapter, we examine the relevant behavioral differences between models with
A # 0 and those with A = 0.

In any case, a first answer to the problem of the spatial curvature in the MR-model
is given by the following theorem:

Theorem 3.7. In the MR-model, the spatial curvature cannot be zero.

Proof. Part 1. The cosmological parameters defined in (3.40) and (3.41) are mea-
sured at the present time. They are defined in a similar way when measured at a
generic time 7, i.e.

2 d 2

def ] € def 1 €
Qu(t) = 3 Hz—(t)xgm(t)’ Q.(t) = 3 Hz—(t)ng(t)'
On the other hand, choosing #, as the reference time, equations (3.33) and (3.34)
become

En(r) = il";((ttt)))’ () = Zl((f:))’
so that
 enlt) c? & (to)

) =3 T )

Since, see again (3.40) and (3.41),

3H,
X Emo = C—zo-Qm, X &0 = C—Z-Qr,

it follows that

HZ 1 HZ 1
Q,(t)= 0 a3—(t).(2m, Q)= 0 a4—(t).(2,,
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i.e.

Hy ( Qnlto) Qr(“)). (3.53)

Q,(t)+82,(t) =

040,00 = gy (SR

Part 2. Let by hypothesis be K, = 0. Then, by virtue of equation (3.44) we have
QA+ Qp+Q2,=1.

In this equation, the cosmological parameters €2, and €2, are referred to the present
epoch t, so it should be written

Qp + Q1) + Q2,(10) = 1. (3.54)

We cannot write 24 (f,) because A is by postulate a universal constant independent
of ¢. It should also be noted that this equation must be independent of the scale factor,
i.e. the type of evolution of the Universe. Moreover, by the sign permanence theorem
of the curvature (§1.5) this is zero at all times. Therefore equation (3.54) is any time
valid. It follows that the sum

Qult) +2,(1) =104

does not depend on time, whatever the evolution of the Universe. However, this is
contrary to the conclusion of Part 1 of the proof, that is equation (3.53), which shows
the time dependence of this sum. Thus, the hypothesis K, = 0 leads to an absurd. m

Remark 3.8. The proof of this theorem does not need the numerical estimates of the
cosmological parameters £2,. o

3.9 Weierstrass equation

A Weierstrass equation is a first-order differential equation of the type?

a? =W(a) (3.55)

where the function W (a) is called Weierstrass function.

The dynamical equation of the MR-model is a Weierstrass equation. The function
W may take the three different forms (3.43), (3.45) and (3.49):

W(a) = H} [Qxa>+Qua '+ Q,a7%] — *K,

W(a)=H}[1+ Q24 (@ 1)+ Qu(a ' = 1)+, (a2 —1)] (3.56)

W(a) =HZ |14+ Q4 (a> 1)+ Q, (a1—1+a1+z )}
€q

2 See [13] and Weierstrass collected works, V.II.
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The peculiarity of a W-equation is that, even if we are not able to solve it, we can
infer the main properties of the solutions from the analysis of the function W (a) i.e.
its graph in the plane x = a, y = @?. To do this we must interpret a solution a(¢) as the
motion of a virtual point on the a-axis. Since the first member of the equation (3.55)
is never negative, this motion can take place only in the intervals of the a-axis where
W (a) is non-negative.

These intervals are bounded by the zeros of W (a), solutions of the equation
W (a) = 0, that is, by the points where the graph of W touches or crosses the a-axis.
Note that a zero a. of W(a) is a stopping point because W (a,) = 0 is equivalent to
a =0 for a = a,. Therefore, the search for any zeros has a priority character.

A point a, where W (a,) = 0 and W’ (a.) # 0 is said to be a simple zero.> A zero
where instead it is W'(a,) = 0 is said to be multiple zero. These two types of zeros
have quite different properties.*

A simple zero a, is an inversion point in the sense that if the virtual point
moves toward a simple zero a. then reaches it in a finite time, there it stops and then
moves off again in the opposite direction (see Figure 3.1).

y=W(a)

Fig. 3.1. Simple zero a, as inversion point.

A multiple zero is an asymptotic objective in the sense that if the virtual

point moves toward a multiple zero a., then it never stops and never reaches it (see
Figure 3.2).

3 The superscript’ denotes the derivative with respect to a.
4 More details can be found in §3.12.
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y=W(a)

Fig. 3.2. Multiple zero as asymptotic objective.

Assume that:

(i) W (a) is positive in a closed interval [a, ,a,];
(ii) the moving point is located in a, at the time t =¢; (3.57)
(iii) a(z,) > 0, the point is moving toward a,.

Then the velocity a(r) remains positive for r > ¢, and the W-equation equation be-
comes equivalent to

dt = da .
W(a)
Consequently, the position a, is reached at time
4 dx
=+ [ (3.58)
P a; \/W(x)
and the integral
4 dx
t,—t, = (3.59)
! /al VW(x)

provides the time taken in the trip from a, to a,.

3.10 Profiles of the Universe

By profile of the Universe we mean the graph of the scale factor a(¢) on the coordi-
nate plane (z,a). The following properties apply to profiles.

(i) By virtue of the normalization condition a(t;,#;) = 1, and a profile of a(z, ;)
with reference time #; passes through the point (¢, 1).
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(i1) Two profiles that differ by a translation along the ¢ axis have to be considered
equivalent.

(iii) As it is explicitly said in Theorem 3.4, the profiles corresponding to the
functions W (@) (3.56) have 1, as reference time, so they pass through the point (¢, 1).

(iv) If a profile starts from the origint = 0 with a = O then, by posing #, = 0 and
a, = 0in (3.59), then the integral

a  dx
t(a) = /0 o (3.60)

provides the elapsed time in the transition from the initial state of the Universe to the
state where the scale factor has an assigned value a. Consequently, if , (today) is the
reference time, the inverse function ¢(a) of (3.60) is the profile of the solution a(z, t))
of the W-equation, so that, placing a = 1 in the integral (3.60) we get the age of the

Universe:
L dx
ty = 3.61
o= o (3.61)

(v) A Universe profile may pass through points (z.,a,) of particular interest,
which we call key-events. If we place a = a. in the integral (3.60)

@ dx
! /() VW (x) ( )

then we obtain the date ¢, of this key-event.

(vi) In the MR-model the profile of the Universe has four key-events:

Table 3.2. Key-events.

ay Event 1y
1 today state ty
eq balance of matter and radiation density leq
ag beginning of accelerated expansion Iy
are | reionization (beginningg of light emission) | #.
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3.11 Qualitative profiles of the MR-model

a2 =W(a)

qu a

Fig. 3.3. Summary graph of the Weierstrass function (3.43).

The basic analytical properties of the Weierstrass function (3.43) are:

UmW(a) = +eo, lim W(a)= oo (3.63)

a—0 a— o0
Wi(a)=H;[2Qra—Qna*—20Q,a7"] (3.64)
W (a) =H; 294 +2Qua > +6Q2.a™ "] (3.65)

The second derivative is everywhere positive so W (a) is a convex function. Since
the function W (a) tends to +oo for a — 0 and for @ — oo, it has a unique point of
minimum a, # 0, i.e. the root of the fourth-degree equation W'(a) =0

Qua*—1Qua—Q,=0 (3.66)

which is inferred from (3.64). Even if we do not know the values of a, and W, =
W (ag) we can still plot a summary qualitative graph of W (a) (see Figure 3.3).

Differentiating the equation ¢*> = W (a) we find equation 2 = W' (a) @; which in

turns, for @ # 0, provides the equation
24 =W{a). (3.67)

This equation shows that the acceleration 4 of the scale factor cancels in a root of
W' (a). For various reasons, cosmologists have introduced the deceleration param-

eter .
def ad
q < - (3.68)

which cancels out when é = 0. This justifies the notation g, for the root of W’ (a).
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In studying the graph of W(a) we have to consider two cases: W, > 0 and W, <
0.> The case W, > 0 is illustrated at the top of Figure 3.4.

a2 =W(a)
W-function
Wy
0
ag a
progression a(t)
slowed accelerated
expansion expansion
profile a(r)
time #; <—— inflection point:
beginning of the
accelerated expansion
t

Fig. 3.4. Qualitative profile of the Universe in the case W, > 0.

Since W (a) is everywhere positive, there are no zeros, no stopping points. Conse-
quently a(¢) is always increasing (expansion) or always decreasing (contraction). Let
us consider the first case only. The point of minimum marks the transition between a
slowed expansion and an accelerated expansion (middle part of the figure). The qual-
itative profile is shown below where at a, there is an inflection point, corresponding
to a time 7. Note that, by virtue of (3.56), W, > 0 is satisfied for K, < 0.

5 The case W, = 0 s unrealistic because it would correspond to a predetermined relationship
between the cosmological parameters expressed by the equation (3.66).
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W-function

aq

0 — ;

progressions

profiles

Fig. 3.5. Qualitative profile of the Universe for W, < 0.

The case W, < 0 is illustrated in Figure 3.5. There are two simple zeros (inver-
sion points) between which W (a) is negative. Consequently, we have two separate
possible profiles outside the zeros, each with two different orientations. On the left
we have a pseudo-cyclic profile with a big-bang and a big-crunch. On the right we
have a profile, viable in two directions, with unbounded a(r).
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3.12 Complements on the Weierstrass equation

A simple zero a, is an inversion point.

Proof. Let us consider the case of Figure 3.1: ay < a.. The time taken in the path from
the starting position a, to the arrival position a, is given by the improper integral

e a
bty = / 4 _ im da (3.69)
w W@ oy W@

Since the integrand function is positive for a < a,, the integral from a, to a is an
increasing function of a. Thus two possibilities arise: (i) the limit (3.69) is finite or
(ii) it is +oo. Let us consider the Taylor expansion of W in the left neighborhood of
ay:

W(a) = (a—ay) W (a)+ 1 (a—a)* W (@) +...

For a simple zero W/ (a.) # 0. In our case W’ (a.) < 0, so we can write

W(a) = (a—a.) W (ay) 1—1—%(51—@)%4—... = f(a)g(a) (3.70)

where, to the left of a., f(a) &ef (a—ax)W'(a,) is a positive function, while

def W”(a*)
gla) = 1+%(a—a*)m+...

is bounded and positive because lim g(a) = 1. Let us now apply one of the funda-

a—ay

mental theorems concerning improper integrals:

Theorem 3.8. (i) The improper integral

X dx
= p>o, 3.71
IR G70

is convergent if p < 1, divergent if p > 1. (ii) The same holds for the integral

)
/xo mdx, p> 0, (372)

where h(x) is an integrable function such that limy_,,, h(x) # 0.

Proof. (1)
def (¥ dz
I(x) = /Xo (a*_z)p =
p=1: —[log(as —z)]io =log(x, —x9) — log(xs — x).

AL~ [ =)L = o [ —0)1 P = ()17
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p=1: lim I(x) = +oco.

X— Xy

p<l: limI(x)= 5 (a—a)' P
X— Xy
. : _ 1 1— . 1— .
p>1: xlgg*l(x)—q (X« —xo) p—)};r)r}*(x*—x) Pl = —oo.

(i1) is a corollary of (i). m

The integral (3.69) is within this theorem for

p=73 ha)=IW(a.)lg(a).

So itis convergent. The derivative of the Weierstrass equation (3.55) yields the equa-
tion2a = W'(a) a. For a # 0 this equation is equivalent to

2i=W(a). 3.73)

However, for reasons of continuity, this equation is also valid in the limit @ — 0, so
(3.73) holds for every a. Since W (a,) # 0, equation (3.73) implies ¢ # 0. Conse-
quently, when the moving point reaches a. it immediately moves away from it be-
cause at a, its acceleration is not zero. But it cannot go beyond a,. where W becomes
negative. So it is forced to turn back. m

A multiple zero is an asymptotic objective.

Proof. Let us put ourselves in the case of Figure 3.2: the point moves toward a zero
a, starting from a, < a... It cannot stop before a. because W > 0 in the whole interval
ay < a < a,. The arrival time in a is defined as in the (3.69). Butnow itis W/ (a.) =0
and Taylor’s development in the surroundings of a.. becomes

W(a)= % (a —a*)ZW”(a*) + % (a —a*)3 W (a.)+ ...

However, we cannot exclude that it is W”(a,) = 0, W”(a.) = 0, etc. Therefore, if
q > 2 is the order of the first nonzero derivative in a,, we can write

W(a) =% (a—a)?W¥(a.)+ i (@—a)™! WD (g,) + ..
With similar reasoning as in the previous demonstration concerning a simple zero,

we come to apply the theorem on improper integrals stated above with p = %q >1,
In this case the integral (3.69) is divergent. m

Unbounded Weierstrass function.

Let W(a) > 0 in an interval ay < a < a, such that lim,_.,, W(a) = +e. If a(ty) >
0 then the moving point reaches a, in a finite time 7, determined by the ordinary
integral

t 1, 7/“* da
* 0 agp \/W(a)'
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Indeed, we have lim,_,,, 1/1/W(a) =0 and the integrand function can be extended
by continuity to a, where it takes the value O (Figure 3.6).

a, ay a

Fig. 3.6. Vertical asymptote in a,.

Positive W-function in an unbounded interval
ap < a < +oo.

If the point moves toward oo then it can reach 4 in a finite time 7., as long as the
improper integral

T da gef . a dz
‘ /ao JW(a)  atetay /W(2)

is convergent. It is clear that this happens if W (@) has sufficiently high growth (Figure
3.7).

a, a

a, a

Fig. 3.7. W-function defined in an unbounded interval [a,, +o0).
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A Weierstrass equation (3.55) is integrable by separation of variables, being
equivalent to the two equations

da
W(a)

If I(a) is any integral function of the first member then

==+dt. (3.75)

I(a) = + t + arbitrary constant.

Thus, if a = I (y) is the inverse function of y = I(a), then in an interval where I(a)
is increasing the functions

ax(r) =1"'(£ ¢+ constant)

are two solutions of the equation. On the other hand, we can take as an arbitrary
constant a prefixed value ¢, of time, so that we can write the two solutions in the
form

ar(t)==+1""r—1,).

It follows that ay(¢) is an increasing function of ¢ — f, while a_(¢) is decreasing.
These solutions, which we call dual, are obtained from each other by an inversion of
time ¢ and finally translated along the ¢-axis by the difference ¢t — t,.

We propose here, without comment, some examples of how from the graph of the
W-function W (a) we can deduce the salient qualitative properties of the solutions of
the W-equation a> = W (). The following figures show that:

(i) At the top, the graphs of W () in the plane (a, d?).
(i1) In the middle, the type of progression of the moving point on the a-axis.

(iii) In the lower part, the profiles of the solutions in the (¢, a) plane.
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a2 i®=(Aa+p)a

W-functions

progressions (—

profiles

Fig. 3.8. Linear and quadratic W-functions with simple zero.
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a2 =W(a)
W-function
)
0 Agtat a
permanent expansion
progressions permanent contraction
slowed expansion
profiles '
1y
a+
DT S N
accelerated expansion
S B
t

Fig. 3.9. Convex W-function unbounded in @ = 0 and with a positive minimum.
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progressions

profiles

W-function

inversion points

slowed slowed
expansion contraction
accelerated

expansion

S B

Fig. 3.10. Convex W-function unbounded in a = 0 with a negative minimum.
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dz
W-functions
simple zero 1) T a
0
expansion
. contraction
Progressions |- e Yo
permanent expansion
permanent contraction
slowed
expasion 4
profiles
ermanent
accelerated P
contraction slowed.
...expansion
permanent
accelerated
contraction
S B
t

Fig. 3.11. Decreasing W-functions with limit & at +oo. For 6 > 0 no root, for § < 0 a simple
root.
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Numerical cosmology

4.1 Gathering cosmological data

To put the MR-model at work, numerical estimates of the four primary data (3.50)
are needed. A large number of data reports have been published in recent years.
Special attention has been paid to the Planck project reports published in Astronomy
& Astrophysics. The table 4.1 shows some estimates provided by the most recent
reports [1], [2], [3].

Table 4.1. From A&A Planck reports (2016).

[11T.21
first column

[1]1 T.21
second column

2] T.8

H, | 67314096 | 67.27+0.66
Q4| 0.685+£0.013 | 0.6844 40.0091
Q| 0.31540.013 | 0.31560.0091
Zeq| 3393449 3395433

)

13.813 £0.038

13.813 £0.026

13.799+£0.021

Zre

+1.8
99716

+1.7
10.0717

1.2
8.8%11
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From [3] T.8

H, 66.93 £0.62

Qp missing

Q,,| 0.320240.0087

Zeq missing

t, | 13.8261+0.025

Zre 8.24+0.88

Additional primary data estimates were taken from the 2010 Wilkinson Mi-
crowave Anisotropy Probe project [21]:

Table 4.2. From WMAP 7th year (2010).

H,

70.01 £+ 1.3 kms™ Mpc™!

Q4

0.721+0.015

-Qlol

1.0052 £0.0064

Iy

13.75+0.11

Finally, the most recent and reliable Hubble factor estimate obtained in conjunc-
tion with the gravitational wave detection in August 2017 was taken into account

[14]:

H, = 70.0Jjé'2(')0 km silMpcf1

This estimate is in full agreement with that in Table 4.2.

“.1)

Remark 4.1. The value of H, strongly influences the calculation of many cosmolog-
ical quantities, such as, for example, the age 7, of the Universe. It is therefore appro-
priate to take into account both the estimate (4.1), denoted by H,, and the estimate

given in the third column [2] T.8 of Table 4.1 (Planck), denoted by H,. e

In summary, we will base the numerical analysis of the MR-model on the follow-

ing primary data values:
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Table 4.3. Primary data of the MR-model

H, | 70.0 kms~'Mpc~! | Ligo [14]

H, | 67.74 kms™'Mpc~"! | Planck [2]

Qp 0.6911 Planck [2]
Q,, 0.3089 Planck [2]
Zeq 3371 Planck [2]

Regarding the uncertainty margins of the values of the cosmological parameters
Q4 and Q,, in Table 4.1 we observe that

[0.6911+0.0062]  [0.6973]

Q= 0.6911 = 10.6911
[0.6911-0.0062 | | 0.6849
[0.3089+0.0062]  [0.3151]

Qu= 0.3089 = 10.3089
| 0.3089-0.0062 | | 0.3027 |
0.69737 [0.3151 1.0124

Qp+ Q= {06911 | + 03089 | = | 1 4.2)

0.6849 | | 0.3027 0.9876

4.2 In the MR-model the spatial curvature is positive

In §3.8 it was shown that, regardless of the numerical estimates of the cosmological
parameters, the spatial curvature in the MR-model cannot be zero. Owning the above
estimates, we can now state that:

Theorem 4.1. In the MR-model, the spatial curvature is positive.

Proof. For the mean values of the cosmological parameters 2, and €2, the equality
Qp+Q,=1. (4.3)

holds. By virtue of (3.39) and (3.40) this equality translates into

2 2

1 ¢ 1€ _
§H—02A+§H—027(8m0—1

ie. 2
e [A+x €m0 =3. (4.4)
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Such a precise numerical relationship between the universal constants A, c, X,
and the quantities measured in the present epoch, Hy and &4, is rather doubtful.
However, a reasonable interpretation of this fact! is the following: the sum Qa + Q,,
is equal to a number different from 1 but contained in the uncertainty interval (4.2)

0.9876 < 24 + £,, < 1.0124.

In light of these facts, it should be noted that if in (3.44) we place Q4 + Q,, =1 we
find

HZ
Ko= % 0 (4.5)

Therefore, as the number 2,4 + €2, approaches the number 1 the value of the curva-
ture gets closer and closer to the positive value given by (4.5). m

Indeed, as is to be expected, the curvature will turn out to be extremely small (see
§4.5).

4.3 Closed Universe model

We resume here the discussion just outlined in §1.5 on the topology of spatial sec-
tions. The simplest topology that a three-dimensional manifold with constant positive
curvature can assume is that of the sphere S3.>

In this case each spatial section S; is diffeomorphic to a sphere S3 of radius r(t)

represented by equation
X424+ = (1)

in the tetra-dimensional space R* with orthonormal coordinates (x,,%,,%,,%,), cen-
tered at the origin. Such a cosmological model is called closed Universe model. It
can be shown (see §7.1) that the curvature of each §; is

K(t) = . (4.6)

! This is one of the so-called coincidence problems that arise in cosmology.
2 In obedience to our principle of simplicity we can assume this as a (last) Postulate.
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galaxies

. A ~ \
isochronous i
s I B

distance djp
at time ¢

spatial section
at time ¢

constant
separation
angle

YaB

Fig. 4.1. Radial representation at time ¢ of a closed Universe.

The radius of the hypersphere Sz = S; contracts and expands with time while the
center O remains fixed. In this way we obtain a radial representation of the evolu-
tion of the Universe. Figure 4.1 provides a two-dimensional view. Each galaxy A is
a point moving along a line exiting from the origin. At each instant ¢ two galaxies A
and B stand on the hypersphere of radius r(z) and are separated by an arc of maxi-
mum circle (geodesic arc) whose length is equal to the isochronous distance dap(t).
The straight lines joining A and B to the center form an angle Y45 such that

dAB(l‘) = YaB r(t) 4.7

We call it the separation angle of the two galaxies. This angle remains constant
over time. The maximum distance between two galaxies is 7 r, half the length 2 r
of a maximum circle. It follows that the maximum angular separation is Wpax = 7.
Figure 4.1 represents a snapshot at time ¢ of a closed Universe. Figure 4.2 shows
the movie formed by the sequence of these snapshots. This movie is immersed in
the affine space R>. The individual ‘frames’ are affine spaces R*. The circles are the
hyperspheres of radius r(¢) representing the spatial sections.
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Sf 283

RS

Fig. 4.2. Penta-dimensional affine space-time of a closed Universe.

4.4 Measurement units of the Hubble factor

The physical dimension of H, is T~ Astronomers measure H,, in units km s~ Mpc~!.
However, for our purposes it is more convenient to use Gyr (Giga-year, billion years)
as the unit of time and then, for homogeneity, to use Glyr (Giga-lightyear, billion
light-years) as the unit of length.

Despite the fact that these units are even deemed ‘deplorable’ by some ‘insid-
ers’, they are instead more perceptible to the uninitiated people and moreover their
use facilitates considerably the numerical treatment of cosmological models in gen-
eral. For example, with this choice the application of formula (4.5) for the calculation
of today’s spatial curvature does not require the intervention of the numerical value
of the speed of light ¢, which with this convention results to be equal to 1.

The transition from kms™'Mpc~' to  Gyr™!

sive conversion rules.

is obtained by applying two succes-

(i) Conversion from megaparsecs to kilometers:*

km 1

- - 107" 4,
Mpc — 3.0856776 0 (4.8)

1 Mpc = 3.0856776 - 10" km

(i1) Conversion from seconds to years:

3 See [19], Table 2.1
4 From [6].
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1s=3.1709791983765 - 10~ yr

yr 1

A - 108
s 3.1709791983765

Combining (i) and (ii) we find

1 kms™'Mpc™!

10719 . 10711

Gyr! =

1 km s~ "Mpc™' ~0.0010220121532... Gyr~!

Then for the two estimates of H, in table 4.3 we find:

Hy =70.00km s '"Mpc™"' ~0.0715408 Gyr ™"

Hy=67.74km s 'Mpc™' ~0.0692311 Gyr~!

4.5 Space curvature estimates

T 3.0856776"°  3.0856776+%3.17097919...°
1072
"~ 3.0856776%3.17097919...

(4.9)

-1

(4.10)

@.11)

4.12)

By applying formula (4.5) with £2,, = 0.3089 (table 4.3) and the two estimates (4.11)
and (4.12) of H,, we find

Hy—

1_72
Ky = —2 Q, = 0.46885499...% 10 °Glyr 2

_C2

I:I()|—>

1:12
Ky, = C—g Q, = 0.43906907... x 10" Glyr—2

It follows that in the two cases the radius of curvature r, =

is

1
2.0

Hy —| ry = 1460.4299... Glyr

Hy —| ry =1509.1540... Glyr

The lengths of spatial geodesics (Remark 7.2) are

4.13)

4.14)

(4.15)

(4.16)
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Hy— | bmax =271 = 9176.1519... Glyr

Hy — | lmax = 9482.2946... Glyr

4.6 Weierstrass functions of the MR-model

4.17)

(4.18)

By placing 24 + 2, = 1 in the third expression (3.56) the Weierstrass function

becomes

W (a) = H? [az—i-.Qm (al —a*+

a?-1
1+Zeq

(4.19)

Because of what was said in §4.2, equality Q4 + Q,, = 1 is only ‘approximate’.
However, this approximation agrees with the tolerance of the estimates given in the

tables of §4.1.

Taking into account the estimates from the table 4.3 and of the conversion rules

(4.11) and (4.12) we have two numerical expressions of W (a) in Gyr’2 units:

5 1
Hy—| W(a) = (0.0715408)> [az +0.3089 * (_ —d?+
a

a?-1
3372

)

B} 1
Hy—| W(a) = (0.0692311)? [az +0.3089 * (_ —a*+
a

a?-1
3372

)

The corresponding W-functions are plotted in Figure 4.3.

(4.20)

421

5 This ‘agreement’ will be substantiated by the numerical results obtained in the following.



§4.7 - Pointwise numerical profiles of the MR-model 85

a® =W(a), Gyr=?
0.020 +
0.015 +
0.010 +
0.005
W(aq) 0.0039086
i f
0 aq 1 2 a
0.60704895

Fig. 4.3. Weierstrass functions of the MR-model for different values of H,..

4.7 Pointwise numerical profiles of the MR-model.

We are now in a position to determine numerically the two profiles of the Universe
corresponding to the two Weierstrass functions (4.20) and (4.21). It is first necessary
to go back to what was said in 3.11 about describing the profiles of the Universe
within the MR model, which can be obtained by virtue of the advantages offered by
a Weierstrass equation. It should therefore be noted that the W (a) graphs in Figure
4.3 are quite similar to the one plotted in Figure 3.4 in the above paragraph. The
function W (a) in this figure corresponds to a profile a(r) starting from the origin of
the plane (¢, a), that is, satisfying the initial condition a(0) = 0.

This result, obtained at the qualitative level, is of the utmost importance at the
numerical level because it empowers us to apply what was said in (iv) of 3.10, that is,
to use the integral (3.60) to calculate a profile satisfying the above initial condition.
Indeed, by calculating the integral (3.60)

Ha)= /()a ;l;(x)
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for a sufficiently fine sequence of values of a one obtains a numerical pointwise rep-
resentation of the function #(a), whose inverse a(t) provides a pointwise numerical
representation of the profile of the MR-Universe. It is clear that, the more dense the
sequence of a is, the more the points of the graphs of #(a) and a(t) tend to be indis-
tinguishable. But the real great virtue of this method is that the small but inevitable
error in the computation of one #(a) does not affect the computation of the next ¢ (a),
as it does in neat step-by-step integration methods.

The profiles of the MR-Universe obtained by this method, corresponding to the
two values H, and H, of the Hubble ‘constant’ are plotted in Figure 4.4. As noted in
item (iv) of 3.11, in both cases the reference time of the scale factor is the present
time t,.

These profiles are in perfect agreement with Figure 4.5 taken from A.G. Riess’
Nobel Lecture and conveniently reworked.® The envelope of the spatial sections (red
curve) has the same trend as the scale factor.

a(t7t0)
2 =+
1.5+
1
ag zero acceleration 13.3611 | |13.8069
0.5+
deceleration || acceleration
f - f f f f
5 t 10 t, 15 20 25 t
q 0
age Gyr
of the Universe

Fig. 4.4. Pointwise numerical profiles of the scale factor in the MR-model with different H,,.

62011 Nobel Prize in Physics, together with Saul Perlmutter and Brian P. Schmidt ‘for the
discovery of the accelerating expansion of the Universe through observations of distant
supernovae’.
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Universe
profile

accelerated
expansion

inflection
point

slowed
expansion

' - ! time

sections today
snapshot

Fig. 4.5. Riess profile.

4.8 Age of the Universe and other key-dates

Let’s recall here the table 3.2 of key-events:

Ay key-event ty

1 today’s state to

Geq | €qual matter and radiation densities | feq

ay | zero acceleration of the scale factor | ¢,

Are reionization te

87

4.22)

Given a value of the key-scale factor a., the corresponding date is calculated by the

integral (3.62)

(4.23)

where the numerical expressions of the two W-fuctions corresponding to the esti-

mates ﬁo and H, of H, are given in (4.20) and (4.21):

- 1 21
Hy | W(a) = (0.0715408)% |a® +0.3089 % (= —a? + &
a 3372

. 1 21
Hy—| W(a) = (0.0692311)? |a® +0.3089 ~ —a?®+ 2
a 3372
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o Age of the Universe #,.” Scale factor a, = 1. The time ¢, is given by the integral

which provides the two estimates

Hy— 1, ~13.36116 Gyr

_ (4.24)
Hy —ty ~ 13.80692 Gyr

¢ Date 7., of equal matter and radiation density. Recalling the estimate zeq—3371
from Table 4.3 and the definition (3.47) of aeq results in

- !
eq 1 Zeq

=10.2965599...x 1073 (4.25)

¢ Date 7, of scale factor zero acceleration. The key-scale factor a,;, minimum value
of the function W (a), is the positive root of the equation (3.66)

4 1
.QAaq—j.Qmaq—.Qrzo
can now be rewritten as
4 1
Q4 aq—Qm (jaq—i-aeq) =0.

The resulting estimates are

aq ~0.60704 (4.26)

Hy— 1, ~7.37949 Gyr, Hy 1, ~7.62569 Gyr (4.27)

o Beginning ;. of the reionization epoch (Let there be light). From the estimate
zre = 8.8 of the reionization redshift in the third column [2] T.8 of Table 4.1 we
derive the corresponding value of the scale factor

def 1
= ~ 0.10204 4.28
Are 1+ 20 ( )
from which we get the dates
ﬁo — te ~ 0.54409 Gyr, Hy — t ~0.56224 Gyr 4.29)

7 The beginning of the Universe is at t = 0.
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Remark 4.2. From (4.28) we derive the value of the radiation density €2, by means
of the (3.46):

Q, = aeq 2, = 0.91607354... % 104 (4.30)

Note its small value in respect to €. This confirms the well-known fact in the
present epoch that matter predominates. o

Remark 4.3. The decrease of H, in the transition from ﬁo to H, has the effect of
increasing all the dates, especially the age of the Universe (4.24). In turn, the increase
in t(a,) dating has the effect of shifting the profile of the Universe toward the future,
as shown in Figure 4.4. o

Remark 4.4. Observe that the value #, = 13.8069 Gyr corresponding to
Hy=67.74kms 'M!pc!

is in full agreement with the value #, = 13.799 + 0.021 Gyr in Table 4.1 (third col-
umn). e

This response supports the validity of the MR-
model and the choice made of primary data.

Remark 4.5. According to the ACDM-model® the age of the Universe is 13.7340.12
billion years, with (i) a Hubble constant H, = 70.1+1.3 kms’lMpc’l, (i) 4. 6 % of
ordinary baryonic matter; (iii) 23 % of dark matter of unknown nature; (iv) 72 % of
dark energy favoring accelerating expansion; (v) less than 1 % of neutrinos. e

4.9 Analytical profile of the MR-model

Following the method of integration of a Weierstrass equation, we have constructed
the numerical profile of the MR-Universe and obtained other significant numerical
data. But what we really need in order to continue our analysis is the knowledge
of an analytical profile, that is, to express the scale factor a(¢) by means of known
elementary functions.

Searching for an exact solution of a(t,#,) of the Weierstrass equation (3.56) is
not only a difficult problem, it is also unnecessary because it would lead to non-
elementary transcendent functions that can be treated only by approximate represen-
tations. One might as well look for non-exact solutions involving elementary func-
tions but capable of representing exact solutions with sufficient accuracy.

8 See the data provided by the Wilkinson Microwave Anisotropy Probe project (WMAP) [21].
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This idea can be realized by considering functions of type’

Bt _ 1\2
alt,to) = o/ cosh(Bt) —1=a{ %(EETU 4.31)

where o and f are positive constants. Note that o must be dimensionless and
Dim (B) =T~ L.

Theorem 4.2. Given the values of Hy and t,, the constants o and B are uniquely
determined by imposing the two conditions

() a(ty,to) =1  (normalization condition),

Proof. Part 1. The Hubble factor of the profile (4.31) is

. ﬁ[
defd e’ 41
H(t)= - = 3B—6B,_1 (4.32)
Indeed, setting for simplicity X & B , we have successively
dloga ,d _ (P'—12 [ d (X—1)
Hit)=——=37—log————— =7 —log———
=2 Sdr 8T oBr Sar %X
d X X
1 1
=z—[2logX—1)—logX|=3(2——=
3 [2log(X —1) —logX] = 3 (25—~ )
2X—-X+1., (X+1X [ X+1
1 1 1
= = = = _ = = é 4 2
S (xX-1)Xx 3X-1X 3X—1B (4.32)
Part 2. Imposing condition (ii) H (z,) = H, we find.
Bto
ePlo+1
B 1 3H, (4.33)

This equation can be solved with respect to 3 because the function H(t) (4.32) is
increasing.

Part 3. Imposing condition (i) on (4.31) we find

Bto
a= ! — 2 (4.34)
/cosh(Bty) — 1 (ePro —1)2

Therefore, @ is uniquely determined by 8 and 7. m

9 The two expressions in this profile are equivalent because

(=1

cosh(x)flz%(e"+e*"72):%e*" [€2X+1*2€X] :% ~
e
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Remark 4.6. From now on we will carry on the numerical analysis with the estimate
(4.11) H, of the Hubble factor,

Hy = Hy, =70.00km s~ 'Mpc~" ~0.0715408 Gyr ! (4.35)

and consequently with the first estimate (4.24) of #,:

ty~13.3611603 Gyr| e (4.36)

Theorem 4.3. From the data (4.35) and (4.36) for the constants o and B we get the
values

a~0.607247| | B ~0.178366 Gyr ™! (4.37)

Proof. We calculate f by solving equation (4.33). Then « is calculated by applying
(4.34). m

We then obtain two equivalent numerical expressions of the profile (4.31):

alt, 1) = 0.607247 x \3/ cosh(0.178366 % 1) — 1 (4.38)

[
exp(0.178366 %) — 1]2
a(t, 1)) = 0.607247 % 1 Ix [exp( )1l (4.39)

exp(0.178366 x 1)

This analytical profile is plotted in Figure 4.6 along with the pointwise numerical
profile of Figure 4.4: we see that they are virtually indistinguishable.

a(t,f)

1.5+

T T
Iy 10 fy 15 20 25 Gyr
13.36116

-

Fig. 4.6. Profile of the Universe in the MR-model.
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The function (4.38) is not an exact solution of the dynamical equation
(4.19) but is a faithful representative of it that we will refer in the con-
tinuation of our analysis.

4.10 Changing the reference time

If we like a profile with a reference time #; different from today’s #, we can apply the
rules (1.25),

a(t,ty) = al(t,t) a(ty,ty) =

so that from (4.31) we get

a(tato)
a(tﬁa tO) ’

cosh(ft)—1174
alt,ty) = [cosh(B 1) — 1} ’

(4.40)

In Figure 4.7 we can see, for example, the two profiles related to #; = 11 and
ty = 17. 1t is interesting to observe that the null acceleration time ¢, (correponding to
the inflection points) is invariant.

a(t,t)
2 =4
L5 =11
tt =17
1
inflection points /
0.5+ /
deceleration | acceleratjon
f f f f f
5 10 15 20 25 t
Iy fy
=11 today =17

Gyr

Fig. 4.7. Profiles with reference times # different from #,.
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4.11 Time evolution of the Hubble factor

The function H(t) (4.32) admits the equivalent analytical representation

B sinh(B1)
(1) =3P cosh(f1)—1

where the constant & is non longer involved. Also:

W —

. cosh(f1t)
limH (1) = 1 — 2 — foo,
fimH() =3P lim gy T
h(Bt
H. = lim H(1)= 1B lim cosh(Br)
t—+oo

1
= 3 =0.0594556.
t—+e sinh(Bt) 3 F

The numerical expression of H(t) (4.32) is then

0.178366xt 1
H(1) = 0.0594556 % +

20178366+ _ |

93

4.41)

(4.42)

-1
H(t) (Gyr™)
1.5
1 -
0.5 1
0.059455 : , , , t
5 10 15 20 G
1 f yr

Fig. 4.8. Evolution of the Hubble factor H(t).

Remark 4.7. Equation (4.32) is solvable with respect to X = P

H:%/}i—i:mli(x—l):ﬁ(xm
— BH-B)X=B+3H

Since X = P!, it follows that

3H+P
=X = :
3H-B
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1 3H(t)+p
t=—log—F~F— (4.43)
B T3H(t)-B
The evaluation for t = ¢, gives a new expression of the age of the Universe
1 3Hy+f
th=—1 4.44
0 B Og 3H0 _ B ( )

in terms of the constants H, and 3. Plugging in the data (4.11) H, = Hy=0.07154 Gyr™!
and (4.37) B = 0.178366 Gyr~! gives the estimate

to = 13.36116 Gyr (4.45)

in perfect agreement with that previously found by means of the integral

o= /01 ;l;(x)

This result attests the reliability of the MR-model. o

4.12 Super-luminal recession speed

Combining Hubble law (1.34) dap(t) = H(t) dap(t) with equation dap(t) = a(t, ) dag(to)
derived from (1.30) by posing #; = 1,, we get the recession speed of two galaxies

dap(t) = a(t, 1) dap(to) (4.46)

in terms of their present time distance dap(fy) and the growth rate of the scale factor
a(t,t).
In the MR-model this growth rate is given by

sinh(B1)

op 5
[cosh(Br) —1]3

(4.47)

L —

a(t,ty) =

It is obtained by deriving equation (4.31) with respect to ¢. It is plotted in Figure 4.9.

Given the present time distance dap(t,) of two galaxies, the recession speed
dAB(t), which is unbounded around ¢t = 0, decreases rapidly to a minimum value
0.06253447 at time ¢, ~ 7.37949, after which it begins to increase slowly. The time
of minimum ¢, does not depend on the distance dap (ty) and is determined by the
equation d(ty,t)) = 0. It is therefore the time of the beginning of the accelerated
expansion.
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a(t,ty) Gyr™!
0.15
01+

0.07154
0.05 +

t
I I I i
t 5 A 10 fty 15 20 Gyr
3.21013 7.37949

Fig. 4.9. The growth rate a(z,%,).

The recession speed dap(t) of two galaxies can be super-luminal, i.e. it could
exceed the speed of light:
dag(t) > c. (4.48)

This circumstance does not contradict the canons of relativity because a recession
speed is not the speed of a particle with respect to a reference frame, but is due to the
expansion-contraction of the Universe.

In the units Gyr and Glyr that we have used so far for times and lengths, the
numerical value of the light speed is ¢ = 1 (§4.4). Thus, due to (4.46), the super-
luminal condition (4.48) is expressed by the inequality

c

dag(ty) > )

L oe=1 (4.49)

Consequently,

Theorem 4.4. Two cosmic bodies with current distance dag(t,) have a super-luminal
recession speed in the time-interval where the inequality (4.49) is satisfied.

The super-luminal condition (4.49) shows that the function

L(t,to)“éfdc . c=1 (4.50)

plays the role of trans-luminal border marking the transition from sub-luminal to
super-luminal states. The meaning of Theorem 4.4 is explained by Figure 4.10.
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Glyr
forever super-luminal
dap(ty)
15.9911 Limax
. C
~—trans-luminal border L(7,7,) = -
15+ a(t,ty)
P = L S I Hubble radius
I ' super-luminal zones
dap(ty)
sub-liminal zone
10+
5 -4
t
n | | pe | :
5 ty 10 f, 15 20 25 Gyr
7.37949 13.3611

Fig. 4.10. Trans-luminal border L(z,7,) and recession speed.

1. The transluminal border attains its maximum value at the time #,, when the ac-
celeration of the scale factor is zero. In fact, from the definition (4.50) it follows

that

dL(t,t) d ¢ i(t,t)

di dialtn) @)

and this derivative is zero when d(t, ;) = 0. The maximum value turns out to be

Limax ~ 15.9911 Glyr 4.51)

2. Consider two cosmic bodies A and B whose current distance is dap(t) and draw a
horizontal line corresponding to this value.
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3. If dap(ty) < Lmax then this line crosses L(z,#,) in two points which correspond to
two times #; < f,. Consequently, the recession speed is sub-luminal in the temporal
interval (¢1,#;). and super-luminal outside this interval.

4. If dap(ty) > Lmax then the recession speed of the two bodies is always super-
luminal.

5. Close to the big-bang the recession speed of whatever couple of galaxies is super-
luminal.

6. The astronomers have introduced the Hubble radius (or Hubble length) defined
by

e 4.52)

In our context this length is equal to the current value of the transluminal function,
ie.

rg = L(t(), to) (453)

This follows by applying formula (1.35) written for t; = 1o, i.e. H(ty) = a(to, t)):

C - C -
a(ty,to)  H,

L(to,to) = ryg.

Furthermore, observing the location of the point % in Figure 4.10 we can state that

Theorem 4.5. If the today distance dap(ty) of two galaxies A and B is equal to the
Hubble radius ry then their recession speed starts today to be super-luminal and
will remain so forever.

4.13 Models with null cosmological constant

For A = 0 the Weierstrass equation (3.43) becomes

A*=H} [Qna '+ Qa7 %] — K. (4.54)

Theorem 4.6. In the A = 0 models, the space curvature cannot be zero.
Proof. With A = 0 equation (3.54) reduces to
Qu(to) +£2,(t) = 1, (4.55)

and with the same arguments as in the proof of Theorem 3.7 we arrive at an absurdity.
| ]

Figure 4.11 compares the two functions (4.54) corresponding to the two signs of
K, and the Weierstrass function (4.19) of the MR-model.
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Chapter 4 - Numerical cosmology
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Fig. 4.11. Comparison between profiles with A = 0 and A # 0.
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For K, < 0, it is always W (a) > 0: no stopping point. The Universe has a slowly
decelerating expansion from the beginning until +co.

For K, > 0, W(a) has a simple zero. The Universe has a cycloidal-type evolution
with a big-bang and a big-crunch in finite time.

We observe that in the case K, > 0 there is a discontinuous change of profiles in
the transition from the A = 0 model to the A > 0 model. This fact gives the model
A =0 an unacceptable character of instability.

For K, > 0 the profile of the Universe is similar to a cycloid. In fact, it is a
true cycloid in the case where the radiation density is neglected. In fact, if we place
Q, =0 in the equation (4.54)

a> :Hoz.chf1 —CZKO

it can be verified that the solutions are expressed by the parametric equations

B .
ct:\/l?o(e—sme), BdﬁleOz Q,
b
a=B(1-cosH), 0

it can be verified that the solutions are expressed by the parametric equations

ct =Bry(6—sinb),
(4.56)
r=Bry(1 —cosH).

In the plane (x,y) = (ct, r) these equations represent the cycloid described by a point
V on the edge of a circle of radius R = B r, rolling on the x axis, as shown in Figure
??. The parameter 0 is the angle of rotation of the circle, with 6 =0 for ¢ = 0.

T 60=2n

Fig. 4.12. Evolution of the cosmic radius r for K, > 0 and Q, = 0.
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Signal transmission and visibility

In §1.12 we identified the reference space with a fabulous instrument, called cosmic
monitor, that provides a virtual view of the Universe where galaxies are fixed points
and wandering particles are visible as curves parameterized by cosmic time ¢. We
will make an extensive use of this tool in this and the next chapter.

5.1 Photon transmission

Photons are very strange particles: they are never at rest and have the same speed ¢
with respect to any reference space. This is in agreement with the theory of prop-
agation of electromagnetic waves: by virtue of Theorem 2.9, in space-time the his-
tories of photons are identified with electromagnetic rays, of visible or non-visible
frequency. Therefore, photons (in a broad sense) are the vehicle by which signals
are transmitted, and therefore we will consider the terms photon and signal as syn-
onyms.

The current view of the primordial Universe places at about 377000 years af-
ter the big-bang the transition from an opaque cosmos to a transparent one. In this
epoch, called recombination, the first neutral atoms formed and reached their min-
imum energy state generating photons (photon decouplig) that even today can be
intercepted as cosmic background radiation. But at that time stars have not yet
formed and there are no light sources. The first stars and galaxies formed around
400-700 million years after the big-bang.

To work on this topic we associate with each galaxy A an initial emission time
tpa at which A begins to emit photons. All these times belong to a time interval called
reionization epoch whose beginning is, see (4.29),

tre =~ 0.54409 Gyr (5.1

The relativistic bridge-postulate states that photons are characterized by equation
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ds
a(t,ty) d_tu =c

where ds; is the arc-element of the reference space. This equation implies that

(i) If lim;—;, a(t) = 0 (7 beginning of Universe) then

This means that!

Theorem 5.1. If lim;_;, a(t) = 0 then on the cosmic monitor the speed sy of a pho-
ton tends to +oo when t tends to the beginning of Universe.

Note that s} is not the peculiar speed.

(ii) If lim;_, a(t) = 4o (¢ end of the Universe) then

This means that on the cosmic monitor, the speed of a photon tends to zero when t
tends to the end of the Universe. In other words, its trajectory tends toward a fixed
point, that is, a galaxy. In turn, this is equivalent to saying

Theorem 5.2. [f limy_;, a(t) = —+oo then, in approaching the end of the Universe,
the history of a photon tends to touch the history of a galaxy.

Remark 5.1. Both assumptions of these theorems are satisfied in the MR-model. o

5.2 Emission-reception relationship

This chapter will deal with two cosmic bodies (galaxies) A and B whose histories are
time-like geodesics belonging to the cosmic fluid congruence:

(1) body A is capable of emitting photons whose histories are null geodesics of
space-time;

(i1) body B is equipped with instruments capable of intercepting photons from
the cosmos.

1 See also Theorem 2.6 and Remark 2.2.
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d(teAvtrB;tj;)

spatial
sections

histories
of cosmic bodies

Fig. 5.1. History of a photon P emitted by A and received from B.

Suppose that a photon P is emitted from A at a certain emission time 7,4 and that
its history crosses the history of B at a reception time #,5, as shown in Figure (5.1).

Theorem 5.3. A photon emitted from A at time t,5 can reach B at a time t,p if and
only if

/ A ey (52)
¢ tep a(tvtﬁ) ABU

where dap(t;) is the distance of A from B measured in the reference space St,.-

We call equation (5.2) emission-reception relationship.

Proof. The progression of P on the cosmic monitor is shown in Figure (5.2).

Fig. 5.2. Progression of photon P observed on the cosmic monitor.
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Since the trace of P is a geodesic, the trajectory of P is represented by a line segment
with endpoints A to B. Its length is dap(;). Let us denote by

d(tea,t;ty)

the distance traveled by P at time ¢. From equation (2.7) we infer that the point P
moves with velocity

dsy ¢ (53)
dt  alt,t) '
Then the distance traveled by P at any time ¢ > f,4 is given by
T dt
d(tea,t;ty) = c/ 54
Weaslit) =¢ | afie) o4
For t = t,p we find d(tea,t,8:1;) = dap(ty). m
Remark 5.2. The integral
rodt
L) = | —— 55
new = [ o 55)

with #; = £, Is called conformal time by cosmologists. e

Remark 5.3. The emission-reception relationship (5.2) has a remarkable geometrical
interpretation illustrated in Figure 5.3.

c S B

the shaded area is equal
to the distance of A and B

in the reference space.

TeA IrB t

Fig. 5.3. Geometrical interpretation of equation (5.2).

The shaded area delimited by the graph of c¢/a(t,t;) over the emission-reception
interval [f.4,,8] is equal to the integral (5.2) and thus equal to the reference distance
dAB(tu)- Note that, from the dimensional point of view, this ‘area’ is in fact a time x
velocity, that is, it has the dimension of a length. e
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Theorem 5.4. The emission-reception relationship (5.2) does not depend on the
choice of reference time t;.

Proof. By virtue of (1.27), a(t,#;) = a(t,t,) a(t,,1;), we have
todt c tdt
d(tea, 3t :c/ = / =a(ty,1,)d(tea,1:1,).
W) =€ | )~ ) i) P et

Subsisting the relation (1.30) dag(t;) = a(ty, 1,) dap(t,) between the distances, it fol-
lows that

d(tea,t;1,) = dag(ty)
for any ¢, specifically fort =+¢5. m

Because of this independence we can take the present time f, not only as the
reference time but also as the receception time #,5. Then the emission-reception re-
lationship (5.2) becomes.

¢ /IIO W (o) (5.6)

eA Cl(t, to)

This formula gives today’s distance of a galaxy A from B when the observer in B
knows the emission time 7,4 of the photon and also the profile a(t, #,) of the Universe.

For the MR-model, the profile is given by the (4.38)
o~ 0.607247
B ~0.178366 Gyr~!.

a(t,ty) = a {/ cosh(Br)—1 {

The function under integration in the (5.6) is plotted in Figure 5.4. In accordance
with the geometrical interpretation shown in Figure 5.3, the shaded area multiplied
by c gives the current distance dag(to)-

Gyr

Fig. 5.4. The function 1/a(z,f,) in the MR-model.
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Remark 5.4. If in equation (5.6) we place as the lower margin of integration the reion-
ization time fr, = 0.54409, that is, the time at which cosmic bodies begin to emit light,
then we get the measure of the maximum distance of celestial bodies observable to-

day:

0]
max dap(ty) = c/
1

dt
re a(ta tO)

~29.59185Glyr| e 5.7

Remark 5.5. Equation (5.6) can be used to solve the inverse problem: knowing the
distance dap(ty) determine the emission time t,4 (see Figure 5.5 and Table 5.1). e

dag(to) Glyr

30 | 29.59185 maximal distance

10 +

TeA

te=0.544094 5

10

T
lo 15 Gyr
today

Fig. 5.5. Emission time 7,4 vs. today’s distance dap(t).

Table 5.1. 7,4 — dAB(t0)~

ten | dag(ty) || tea | da(to)
te |29.59185 (| 6 10.09304|
.6 129.06055 | 7 |8.27914
7 |1 28.18729 || 8 | 6.65050
8 12739381 9 |5.17287
1 |2598672 | 10| 3.82179
2 120.89091 || 11 | 2.57909
3 17.32891 || 12 | 1.43079
4 | 14.50813 || 13 | 0.36588
5 12.14273 || t, 0
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5.3 Visible and unvisible Universe

We say that A is visible from B at date ¢ if on that date B intercepts photons from A.
We assume that every body A has its own initial emission time #,4, time at which it
begins to emit photons which we call primordial photons.

Let us observe the progression of a primordial photon P4 in today’s reference
space S,o.2

Fig. 5.6. Progression in Sy, of a primordial photon P4.

Note that:

(1) In the reference space, A and B are fixed points, whose distance is dap(to).

(i) P4 travels on a line from A toward B. This line is the projection on §;, of the
history of P4 in space-time, which is a light-like geodesic. The distance measured in
Sy, and traveled in any time ¢ > #;4 is given by (see equation (5.4))

t t
d(tpa,1310) = c/ d (5.8)

1o (1, 10)

This is an increasing function of ¢ that we call progression of a primordial photon.

Theorem 5.5. If the function d(tya,t;ty) is bounded and if
dap(fo) > lim d(tps,1:5)
then Py can never reach B.

Proof. Figure 5.7 is self-explanatory. m

2 put ty =1y and 1,4 = tp4 in Figure 5.2.
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Fig. 5.7. Theorem 5.5.

Theorem 5.6. If dap(ty) = d(tpa,to;to) then A begins today to be visible from B.

Proof. Figure 5.8 is self-explanatory. m

Fig. 5.8. Theorem 5.6.

Recall that the reionization time ¢, is the minimum of all the times #;4 of pri-
mordial photon emission. Therefore, the distance

def todt
Fois(t) = d(tre,t510) = c/

lre a(t7 to) (5.9)

obtained from equation (5.8) by replacing 7,4 with the reionization time f is the
maximum distance of a galaxy A visible from B at time t. We call it visibility radius
of the Universe at time 7. The use of the term ‘radius’ will be clarified shortly.

Note that this visibility relation is symmetrical with respect to A and B.
The numerical representation of the radius of visibility in the MR-model (whose
profile is given in (4.38)) is>

3 In this formula we must put ¢ = 1 for the result to be in Glyr units (§4.4)
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- c /’ dt
0.607247 Jiy, {/ cosh(0.178366 % 1) — 1

Fyis() (5.10)

The graph is plotted in Figure 5.9 where two significant numbers are highlighted:

e Current value of the visibility radius

Fyis(fo) = 29.59185 Glyr (5.11)

This is the distance dag(ty) of a body A which today begins to be visible from B. We
call this the current visibility radius.

ee The limit

Fine déflgrfmrvis(t) ~ 45.61382 Glyr (5.12)

Since riyy = limy_, yood(tre, ;1) then, according to Theorem 5.5 applied to the case
tpa = tre, if

dAB(tO) > Finy (5.13)
then no photon emitted by any galaxy A will reach B in the future. In other words,
an observer in B will never see galaxies A whose current distance dagp(t,) is greater
than 7,pn, =~ 45.61382 Glyr (5.12). This is the absolute invisibility radius of the
Universe, that is, the radius of the Universe forever invisible to any observer B.

rvis(t) Glyr
50 asymptotic value — +oo
45.61382
40+
30L29.59185
20+
10+
t
I I I I i I i
Tre 5 10 t) 15 20 25 30 35 Gyr
today

Fig. 5.9. Radius of the visible Universe ry;s(t).

The progressions d(ty4,1;1,) of the primordial photons for some values of 74
(2.5, 3, 7.5, 10) are plotted in Figure 5.10. The number d(fpa4,1y;1,) is the current
distance dap (o) of the galaxy A beginning today to be visible from B (Theorem 5.6).
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d(tps,t310) Glyr

501 .
{4 asymptotic values — oo
45.61382
distance dyp(1,) of a body A
40+ which begins today to be
visible from B
35.01030
/:0.544094
28.16469
23.46606 i

19.84376

¢ g ¢ ¢ T T T T T
e 2.5 5 7.5 10 ty 15 20 25 30 35 Gyr
T today
reionization

time « beginning emission times #;4

Fig. 5.10. Primordial photon progressions d (pa,f;1)).

Remark 5.6. The radius rys(t) is called by cosmologists particle horizon or even
cosmological horizon. Because of the expansion of the Universe, its present-day
value ryis(fo) is not simply the age of the Universe #, multiplied by the speed of light,
as for the Hubble horizon (see note below) but rather the speed of light multiplied by
the conformal time, as can be seen by combining (5.9) with (5.5). Today’s particle
horizon represents the extreme distance from which we can draw information about
the Universe’s past. o

Remark 5.7. The Hubble radius is also called Hubble horizon. It establishes the
boundary between particles that are always moving slower than the speed of light
relative to an observer at a given time. ®
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Remark 5.8. Cosmologists call event horizon the minimum distance from which
light emitted now can ever reach the observer in the future. Due to (5.13) this distance
coincides with our radius of absolute invisibility rj,y.®

5.4 Present-time configuration of the Universe

Recall what has already been said in the Preface.

The large circle that appears in Figure 0.4, reprinted here from the end of the pref-
ace, represents the three-dimensional sphere S3 of radius ry, ~ 1460.42 Glyr (4.15)
where the galaxies are currently distributed. Because of the extremely small curva-
ture of this sphere, to an observer in any galaxy B, the Universe appears flat at least in
a neighborhood of about 29.59 billion light-years, as shown in the upper part of the
figure. This distance is the radius of current visibility r.;;(#) (5.11) of the Universe.
This radius is understood to be measured on the sphere S3 and on this determines a
spherical cap of semi-amplitude Wy;s(t)).

In turn, the invisibility radius of the Universe ri,, ~ 45.61 Glyr (5.12), beyond
which the Universe remains forever invisible to B, results in a spherical cap of half-
amplitude i,y .

Both angles y;s(fy) and i,y are not shown to scale with respect to the rest of the
drawing. They are actually very small and would therefore be almost unnoticeable:

Fyis(to) 29.59185
is(fo) = = ~ 0.020262
Yois (1) 7o 1460.429942 0.02026

Finy 45.61382
(o w0 0.0312
Yiny To 1460.429942 0.031233

(5.14)

In the course of the expansion of the Universe, the angle yj;,, remains unchanged,
while y;s grows asymptotically to the limit y,, for t — +oco.
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Galaxies forever Galaxies today
invisible from B visible from B

AN

Tvis (t0)| IriﬂV

~20.59 '~ 45.61 Glyr

® =

sphere S3

expansion

N

expansion

Wyis (to)
increasing angle
with limit v,

for t — +oo

Viny

constant angle
in time

Galaxies forever
invisible from B

Galaxies forever
invisible from B

Today, cosmic space is a three-dimensional sphere
in accelerated expansion
with radius r, ~ 1460 Glyr
and with circle of maximum radius>~ 9176 Glyr

/

expansion

N\

expansion

Fig. 5.11. Present time Universe configuration referred to an observer placed in a galaxy B.

On a sphere S3 with radius r the volume of a spherical cap of semi-amplitude y
is given by (see equation (7.9), Figure 7.3)

V(r,w) =2nr (y—siny cos ) (5.15)

For y = m we get the volume of the whole sphere S3

v =2n%p (5.16)
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It follows that the today volume of the whole Universe is

VU (ty) =2 7% r} ~61.485% 10° Glyr (5.17)

whereas that of the visible Universe is

VUyis(to) = 27073 (Wyis — SIN Yiis €OS Wyis) =~ 108534.8 Glyr (5.18)

5.5 Visibility and super-luminal recession speed

Figure 5.12 shows both graphs of the visibility radius ry;s(¢) (Figure 5.9) and the
trans-luminal boundary L(z,1,) (Figure 4.10).

Glyr
50T — +-o0
45.61382
40+
rvis(t
S0 29.591 ryis(fo)
20+ L
max
13.978F— L(,%) = rg = Hubble radius
104 L(t7t0)
t
I I I I I I I
Ire 5 17 10 fy 15 20 25 30 35 Gyr
q toc?ay

Fig. 5.12. Radius rys(t) of the visible Universe and trans-luminal boundary L(¢,f,) compared.

We observe that the vertical line in #, intersects the graph of L(z,7,) at the level
riy = L(ty, ) corresponding to the Hubble radius, as already shown in §4.12. Recall-
ing Remark 5.7 we conclude that

If the current distance of two galaxies A and B is greater than the Hubble radius
daB (l‘o) >ry

then A and B have super-luminal recession velocities even though they are mutually
visible.

Interesting paradox.
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Cosmic redshift

The cosmic redshift is a phenomenon, due to the expansion or contraction of the
Universe, whereby the frequency spectrum of light emitted by a cosmic body A dif-
fers from that detected by an observer placed in another cosmic body B. This phe-
nomenon should not be confused with the Doppler effect, which also concerns the
variation of the spectrum of some wave phenomenon (sound, light, etc.) emitted by
a body A and received by another body B. In fact, the Doppler effect is due to the
motion of a source with respect to an observer reference system.

6.1 Cosmic redshift

The redshift phenomenon analyzed in this chapter considers two bodies A and B of
the cosmic fluid, that is, two fixed points in the reference space, as shown in Figure
6.1.

Let us consider two photons P and P emitted by A at two successive times f,4 >
t.4 and intercepted by B at times 7.p > f,5. It is to be expected that the two emission-
reception intervals have different amplitudes: f,p —f 4 and t,p — fe4.

Anyway, as shown in Figure 6.2, by virtue of Remark 5.3 and equation (5.6) the
two shaded areas above these two intervals remain unchanged because both are equal
to dap (l‘ ﬁ).
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history of the first photon P(r)

history of
the second photon
P(t)

cosmic
monitor

TeA B feA i t

Fig. 6.2. Shifting of the emission-reception interval preserving the shaded area.
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These shaded areas behave as if they were filled by a planar incompressible fluid
channeled below the graph of c/a(t,#;) and above the emission-reception interval

[teAa trB] .

feA  lea I B B t
H H er H :

Fig. 6.3. The two shaded areas are equal.

Now suppose that the emission time 7,4 of the second photon is very close to
the emission time 7.4 of the first photon, as shown in Figure 6.3. The areas over the
intervals I, = [fa,t,5] and I, = [f.a,T,5] are both equal to the distance dp(#;). Since
the central white area is a common part of these two areas, the two shaded areas
above the intervals I, = [tea,f.4] and I, = [t,p,,5] are equal.

If these two base-intervals are very small in comparison with the intervals I, and
I, then the two shaded areas can be considered equal to the product base x height of
the rectangles where they are contained. Thus, we can write with good approximation

that!
L

a(tea,ty)  a(t,ty)

i.e.

altrgty) _ Iy ©.1)
altea,ts) L '

This formula can be correctly applied when the emission events of the two photons
correspond to two successive crests of a monochromatic wave of length

Aea =cl,

! This argument is taken, with some modification, from [15], pp. 126-127.
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emitted from A. Then the two receiving events from B correspond to two successive
crests of the same wave but now of length

A‘I‘B = Clra

and (6.1) translates into equation

atyg,t;) _ A 6.2)

a(teAa tﬁ) /’LeA

describing the phenomenon of spectral shift or redshift:
{ a(tp,ty) > a(tea,ty) <= A > Ao <>

a(tp,ty) < alteasty) <= Ap<lAea =

{ <= Shift of the original wavelength toward red.

<= Shift of the original wavelength toward blue.

Remark 6.1. If we write the (6.2) in the form

B a(t,p,ty)
a(tea,ty)

rB eA

we observe that the spectrum of a galaxy A observed from B is in fact multiplied by
the ratio a(t,p,#;)/a(tea, t4) and not shifted, as the term ‘shift’ might suggest. ®

By introducing the redshift parameter

def /’LrB - /’LeA /’LrB
= —=7—-1 6.3
ZAB Ton on (6.3)
equation (6.2) takes the form
a(t,p,ty)
=1 4
a(teA,tu) +2AB (6.4)

We observe that this equation is #3-invariant, so that we can chose 7y =, and write

a(trBa tO)

=1 6.5
altonrt0) +24B (6.5)

The following theorem expresses the fundamental role played by redshift.
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Theorem 6.1. Equation

1

— =14z 6.6
alton 1) AB (6.6)

gives the relationship between the emission time t.s of a photon emitted from A and
the redshift zap measured today by an observer living in B.

Proof. This equation is obtained from (6.5) by considering the reception time to be
equal to the present time, #; = f,, and then placing a(ty, %)) = 1. m

Remark 6.2. For a generic time ¢ equation (6.6) can be written in the simplified form

=14z 6.7)

a(t,ty)

Since a(t,1,) is an increasing function with no stationary points, thus invertible, the
redshift 7 can play the role of time parameter instead of t as is customary in astron-
omy. Note that z = 0 corresponds to present time: t = ;. ®

Remark 6.3. Again for the same reason, equation (6.6) can be solved with respect to
toa. This gives a function
ZAB > leA

which, in accordance with Theorem 6.1, gives the emission time f.4 as a function
of the redshift z4p measured today by an observer in B. Actually, the emission time
t.4 is equal to the age of the observed cosmic object A. In other words, by measur-
ing the redshift of a cosmic object we can calculate its age, provided the analytical
expression of a(t,1,) is known, as in the case of the MR-model. o

Theorem 6.2. In the MR-model equation

1 1
teA(ZAB) = E arccosh (m + 1) (68)

gives the emission time of a signal emitted by A and picked up today by B with a
redshift zap.

Proof. Equation (6.8) is the inverse relation of (6.6), thus:?

=(142)%, profile (4.31)

= o’ (1+z)> = cosh(Bt)—1= - = (6.8). =

:>cosh(Bt)—1 o(l+z)

2 To simplify the calculation, let us put zyp =z € f,4 = 1.
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Remark 6.4. Since arccosh(u) = log(u+ v/u? — 1), an alternative representation of
ZAB 7 lea 1S

1 1
teA:Elog(qu Vid—1), v &~ 41 6.9)

Here u plays the role of intermediate parameter. o

In Figure 6.4, page 119, the graph of the function z4p  f.4 is plotted. Some of
its numerical values are given in Table 6.1 below (page 122).

Remark 6.5. The reionization time f.. (beginning of light emission) corresponds to
the maximum value of an observable redshift: z,, = 8.8, see Table 4.1. @

Remark 6.6. Calculation of the slope of the tangent at the initial point. The derivative
of y = arccosh(x) is y/ = 1/v/x? — 1. Then from (6.8) we get

1
1'(z) = u'(z
B2 = —m—1()
1+ 5
For z =0 we have u(0) = ——, a”u/(0) = —3. It follows that
a
1 332 1 3\2 _ 6 142 3
e =R~
a a a
3
o 3
1'(0) = ———=/(0) = ———,
pro) V1+2a3 ©) V14203
3
710)=——— (6.10)
©) BvV1+2a’
For o ~ 0.607247 and B ~ 0.178366 Gyr—! we get
#(0) ~ —13.978027. 6.11)

This is the slope of the curve #(z) at z = 0. The intersection of the tangent with the
z-axis is located at z >~ 0.95586. e
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fea, Gyr
13.36116 (today)
104~
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Fig. 6.4. 1,4 (z4p) in the MR-model.

6.2 From redshift to the current distance

Theorem 6.3. If at the present time t, a cosmic body A is observed from B with a
redshift z = zap then the current distance dap(ty), measured in the spatial section Stor

is given by the integral

o dt
dAB(l‘o) = C/

1(z) a(t,to)

where the lower bound of integration t(2) = t.a(zap) is given by the (6.8).

6.12)

Proof. We put t.a = t(z2), ty =ty and t,p = 1, in the emission-reception relationship

52).m

The graph of the distance (6.12) is plotted in Figure 6.5, where it is compared
with the reception distance dap(t.4) given by equation (6.13) in the next section. See

also Table 6.1 on page 122 for some numerical values.
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dap(ty) éresent déy distanice

2B
Il | | Il Il Il Il |
T T T T T T T T
0 1 2 3 4 5 6 7 8 9
Fig. 6.5. Redshift z4p vs. present day distances and emission time.
6.3 From redshift to the distance at the emission time
dap(t.4) distance at the time of emission, Giyr
6 e e e R
R N S A SUUR e ....................................................
3.01773 :
......................................... RIIERIIES HRRHEERE EEER SRS PN B
: S
: : ZAB
f f I I I I I I I
0 1 2 3 4 5 6 7 8 9
8.8

Fig. 6.6. Redshift z4p vs. distance d4p(z.4) at the time of emission .
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Theorem 6.4. If at the present time ty a cosmic object A is observed from B with a
redshift 7 = zap then the distance dap(t(z)) measured in the spatial section corre-
sponding to the emission time is given by

dap(ton) = —C /IO d__ 1 ) 6.13)
AR T T Y 2as i(z) alt,ty)  1+2zap ABYY '

Proof. From formula (1.30) written with t; = 1, dap(t) = a(t,t) dag(t,), as well as
from (6.12), it follows

dan(t) = c a(t, 1) /’0 d

1(z) a(t,ty)’

Posing ¢ = #(z) results in the following:

dap(1(2) = c a(t(2),10) /

1(z) a(t,ty)’

Finally, we apply (6.7) =1+4+zn

a(ta tO)
On each row of Table 6.1 we find the redshift z4p of a cosmic body A measured
today by B, the emission time #.4, the present day distance dag(f,) and the distance

at the emission time dap(fea).

e The mapping z4p  t.4 is defined by equation (6.9)

1 def 1
tea = =1 21 = - +1
“=73 og(u+u ), u (R +
hence by
1 1
teA(ZAB) = E arccosh (m + 1) (614)

e The mapping f.4 — dag(to) is defined by equation (6.12)
o dt
dAB(l‘o) = C/

feA a(t7 to) '

e The mapping dag(ty) — dap(tea) is defined by equation (6.13)

dap(tea) = dap(ty).

14+ zaB
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Table 6.1: zap — tea — dap(to) — dap(tea).

ZAB tea dag(to) dap(tea)
today’s | emission today’s emission time
redshift time distance distance

0.0 13.361160 0 0

0.1 12.059862 1.364801 1.240728

0.2 10.930753 2.661961 2.218301

0.3 9.947120 3.890388 2.992606

04 9.087011 5.050586 3.607562

0.5 8.332161 6.144310 4.096206

0.6 7.667264 7.174207 4.483879

0.7 7.079443 8.143518 4.790304

0.8 6.557845 9.055803 5.031001

0.9 6.093308 9.914755 5.218292

1.0 5.678087 10.724054 5.362027

1.2 4.970357 12.207806 5.549003

1.4 4.393193 13.533387 5.638911

1.6 3.916490 14.723675 5.662952

1.8 3.518136 15.798076 5.642170

2.0 3.181690 16.772852 5.590950

2.2 2.894767 17.661574 5.519241

2.4 2.647919 18.475571 5.433991

2.6 2.433848 19.224324 5.340090

2.8 2.246851 19.915803 5.241000

3.0 2.082421 20.556736 5.139184

3.2 1.936959 21.152840 5.036390

34 1.807564 21.708992 4933861

3.6 1.691877 22.229372 4.832472

3.8 1.587960 22.717600 4.732833

4.0 1.494213 23.176803 4.635360

4.2 1.409303 23.609706 4.540328

4.4 1.332111 24.018703 4.447908

4.6 1.261694 24.405891 4.358194

4.8 1.197251 24.773123 4271228

5.0 1.138098 25.122042 4.187007

5.2 1.083649 25.454107 4.105501

54 1.033398 25.770622 4.026659

5.6 0.986906 26.072761 3.950418

5.8 0.943791 26.361578 3.876702

6.0 0.903722 26.638006 3.805429

6.2 0.866406 26.902906 3.736514

Continued to next page
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Table 6.1 — Continued from previous page

ZAB feA dag(to) dap(tea)

6.4 0.831585 27.157060 3.669873
6.6 0.799032 27.401171 3.605417
6.8 0.768547 27.635873 3.543060
7.0 0.739949 27.861767 3.482720
7.2 0.713081 28.079370 3.424313
7.4 0.687798 28.289194 3.367761
7.6 0.663973 28.491683 3.312986
7.8 0.641492 28.687246 3.259914
8.0 0.620250 28.876280 3.208475
8.2 0.600154 29.059135 3.158601
8.4 0.581120 29.236134 3.110227
8.6 0.563070 29.407594 3.063291
8.8 0.545936 29.573779 3.017732

Remark 6.7. The distance of 29 billion light-years that we see in the last rows (middle
column) of the table may seem incredibly high in a Universe that is "only’ 13.36
billion years old, where a light-year is the distance light travels in one year and
where nothing can travel faster than light. This is a paradox that has generated many
misunderstandings about the size of the visible Universe and the measurement of
distances in an expanding space. e

6.4 Slipher law and constant expansion models

According to [11], p. 274: “Howard Robertson in 1928 showed that Slipher’s
redshifts and Hubble’s previously published instances supported an approximate
redshift—distance relation

ze=HL [14.5]
where L is the distance of the galaxy, and the constant H is called Hubble term”.

In our context, equation [14.5] translates into Slipher’s law

dap(te,2) =rHZ (6.15)

where
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is the Hubble radius (4.52). This law gives the current distance of a galaxy A in terms
of the redshift z measured from B.

Today we know that the Slipher law (6.15) is acceptable only for small values of
z. However, it is worthwhile to analyze the mathematical aspects underlying this law.
We will see that it is the result of two successive linearization processes.

A constant-rate expansion model (CREM) is based on the assumption that the
Universe has evolved with a constant growth rate throughoutits history. Such a model
is then characterized by a scale factor of the type

acre(t,ty) = p(t—13) +Vv, W, v =constant, u > 0.

However, the normalization condition dcre (tﬁ, tﬁ) = 1 implies v = 1 so the previous
formula reduces to

Acre(t,ty) = p(t —13) + 1.

The corresponding Hubble factor is

H(t—@— K

e M(t—14)+1

By settingt = t; we find H (t;) = . > 0, so the profile of a constant expansion model
turns out to be

acre(t,ty) = H(ty) (t —14) + 1 (6.16)

Hence we observe that a constant expansion model is uniquely determined by the
H(t;) value of the Hubble factor at a given reference time.

0.5

\ Aere(t,13)

10 15 20 Gyr

-

to

Fig. 6.7. Constant-expansion model profile.
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In the plane (¢,a) the profile (6.16) is a line through the point (#;, 1) with slope
H(t;), Figure 6.7. This line intersects the 7-axis at a point 7, marking the start date of
the Universe. By setting t = #¢ and dcre(t, ;) = 0 in equation (6.16) we find

6.17)

As Figure 6.7 shows, this date can have a negative value. This means that the CRE-
model predicts a birth date of the Universe earlier than the date of the big-bang (see
below).

Theorem 6.5. At the point (t;,1) the line ace(t,13) is tangent to each profile a(t ,t;)
satisfying equation

d(l‘ﬁ,l‘ﬁ) :H(l‘ﬁ). (6.18)

Proof. From equation (6.16) it follows dcre(?,#;) = H(t;) for each  and thus dcre (3, 14) =
H(t;). For every other profile a(t,t;) with reference time 74 the same equation
L'l(l‘ﬁ, l‘ﬁ) = H(l‘u) holds. m

In Figure 6.8 the profile a(t,1,) (4.38) of the MR-model is compared with the
profile of the CER-model with 7y = f,.

a(t,f)

\ acre(t’to)
/13.36116
e ] ] ] ] !

T 1
la 5 10 f, 15 20 Gyr
-0.61686
| |
| - >

Hubble time 1t ~13.97802 Gyr

Fig. 6.8. Profile of the constant expansion model compared with the MR-model.
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Since H(ty) = H, ~ 0.07154 Gyr~' e ty ~=13.36116 Gyr, the numerical ex-
pression of the profile (6.16) is

aere(t,10) = Ho (t —tg) + 1 22 0.07154 % (t — 13.36116) + 1 (6.19)

By virtue of the Theorem 6.5 the two profiles are tangent at the point (¢, 1). Applying
(6.17) we find

ta:to—ﬁ:to—t[-]
0

where

1ty = Hy ' ~13.97802 Gyr (6.20)

is the so-called Hubble time. It follows that the beginning of the Universe is dated.

tqg >~ —0.61686 Gyr (6.21)

Let us now examine the transmission of photons in the CRE model

Theorem 6.6. In a constant expansion model, a photon emitted from A at time tep
reaches B at time t,p if and only if

og B —1a
H(t;) toa —tg

dap(ty) = (6.22)

Proof. The emission-reception relationship (5.2) is valid for every profile and is in-
dependent of the choice of reference time (Theorem 5.4). Applying it to the profile
Acre(x,14) we get

r dx
c ———— =dsp(ty). 6.23
/le G (5] AB(1y) (6.23)

It follows that

t, dx 1y dx 1 ty
/zg dere (X, 1) :/zg H(t) (x—1;)+ 1 Hiry) [og (i) (et +1]],
=—— [log [H(ty) (ty —t;) + 1] —log [H(ty) (te — t;) +1]]

_ 1l H®) -+l
- CHW) te—t)+1

1
Let ly (6.17) —— =ty —ta,
et us apply ( )H(tﬁ) t—la
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Theorem 6.7. In a constant expansion model, if B observes A with a redshift zap
then the isochronous distance between A and B at time ty is given by

C
dag(t3,2a8) = H() log(1+zap) (6.24)

Proof. The general equation (6.4) applied to acre; translates to
H(t) (t—t 1
()=t +1
H(ty) (te —t)+ 1
bt ) hte

Dueto (6.17), H () =ty — 1y, we find 1 +z=
veto (6.17), H(ty) =ty —ta, we find 1 +2 te—ty+H 1 (ty)  1.—1q
(6.22) = (6.24). m

Glyr

31.9032§0 : : 5 |

Zmax 8.8

............... o o | CREzmoOdel o
i i i i i j % | i
T T T T T T T 1 T
2 3 4 5 6 7 8 9
<= ZAB

Fig. 6.9. zsp — dap(t,z), comparison between the MR-model and the CRE-model.

In particular, for 7y = #, from (6.24) it follows
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dap(to,z) = ru log(1 +zaB) (6.25)

The graphs of (6.25) and (6.12) are compared in Figure 6.9. They have the same
tangent line at the origin with slope ~ 13.97802.

About formula (6.25) it should be noted that the logarithmic series

2 Z3 Z4 ZS

log(1 S TS T
og(l+z)=z 2+3 4+5+

converges very slowly since the graphs of its reduced sums

ZZ ZZ Z3 ZZ 3 Z4

Z
Z, Z_E’ Z—E‘i‘?, Z—E‘F?—Z,---

differ significantly. Consequently, the only approximation that makes sense is
log(1+2z)~z

and this is acceptable only for small values of z, in full agreement with the Slipher
law (6.15).
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Appendices

7.1 Stereographic projection of hyper-spheres

Xn+1

Fig. 7.1. Stereographic projection of S,: N — B — C.

Equation
X2+ X =1 (7.1)

defines a hyper-sphere S, C Rl = (X,,X,,...,Xnp1) with radius r and centered at
the origin O = (0, .. .,0). Figure 7.1 represents the stereographic projection from the
North pole N = (0,0, ..., r) onto the Cartesian plane R" = (x;) = (x,, ..., x,) tangent
to the South pole S = (0,...,—r). A generic point B = [X;(B),X,+1(B)] di S, is
projected to the point C = [x;(C)] of the plane.
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Theorem 7.1. The stereographic projection S, — R" provides the following para-
metric representation of Sy

dZ
Trrar def def v~
d=2r, p*EY A (7.2)
p?—d? i=1
Xnt1 = p2+d2 r

, def
with parameters x; = x;(C).

Note that the North pole N is excluded from this representation.
Proof. Because the similarity of the triangles NAB and NSC we have

BA NA

- = 7.3
CS NS (73)
Since
NA = I"—XnJrl(A) = I"—XnJrl(B),
NS=2r=d (diameter of the hyper-sphere),
and "
B Xi(B
_— = (), izl,...,n,
cS  x(0)
equation (7.3) is equivalent to
det Xi(B) r—Xu+1(B)
o= = 7.4
whatever index i. It follows that
Xi(B) = ax,-(C).
(7.5)
I"—XnJrl(B) =od = Xn+1(B) =r—od.
Since point B lies on the sphere, its components satisfy equation
n
Y XP(B)+X7,(B) =17,
i=1
Due to (7.5) this equation becomes
n
o Y X O) + (r—ad)* =r. (7.6)
i=1

Since X;(C) = x;(C), by posing

n
5 Ex(C), p*E Y,
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we have the sequence

(7.6) <= o&>p’+(r—ad)?=R* < o> (p*+d*>)—2ard =0

dZ
2 2 2
— d)=d" <= o= —5——.
o(p~+d?) o FEw:
Then from (7.5) we get
dZ
XI(B) = 0x; = m Xi.
dZ dZ pZ_dZ
Xn+1(B)—r—ad—r—md—r(l—2p2+d2>—p2+d2 r. 1

Theorem 7.2. The holonomic reference frame associated with the coordinates (x;)
consists of the n independent vectors tangent to S, defined as follows:

IX;
P T (p* +d?) 8 — 2uxix; a7
' 0Xn11 (p?+d?)? 4rx; ' .
8x,-
9 ! 2, 2y-2
Proof. [A] : p iy =-2(p*+d”) *x.
B 9 pP—d> 2x(p*+d*)—(p*—d*)2x;  4d*
ol pitde (P2 +d2)? T (prrarr’t
X, o d? d?

o I mprrd e
A= | = p2 [—2(p?+d*) 2 xix;+ (p* +d*) 7' §;]

=d? (p2+d2)72 [(Pz-l-dz) 5ij—2xin] [C].

[B] = — =r———5——>s =4rd*(p*+d*) *x; [D].

Theorem 7.3. The canonical Euclidean metric of R"™! induces a Riemannian metric
on S, whose g;; components in the (x;) coordinates are

2\ 72
gij“ifEi-Ej_(1+;{Z;2’> 8ij (7.8)
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Proof.
r def
g = Ei-Ej=
d4 Z (p2+d2) 5ik_2xixk (p2+d2) 5kj—2kaj
(p2+d2)4 k 4rxl- 4r_xj
d4 2 2\2 2 2 2 2
= (02 +d2)? ((p*+d*)*&;j—4(p*+d*)xixj +4p*x;x;+ 16 7 x;x;)
a* 2, P2 2 2 a*
_: (p2+d2)4 ((p +d) 5ij—4d xixj+16r xin) = (p2+d2)2 5ij-

Since

-2
d74 J— 1+p_2
(p2+d2)2 - d2

Remark 7.1. Comparison of (7.8) with (1.19) shows that S, is a manifold with con-
stant curvature K = 1/r% and that the parametric coordinates (x;) are curvature coor-
dinates. o

we find (7.8). m

Remark 7.2. A geodesic of S3 is a maximal circle, that is, the intersection of the
sphere with a 3-plane passing through the origin. We say that a geodesic arc of am-
plitude y (angle to the center of the sphere) has length equal to w R. Thus the length
of a maximal circle is 2 yR. o

X4

Fig. 7.2. Volume of a hyper-spherical cap: S, C S3 C R*.
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7.2 Volume of a hyper-spherical cap

The intersection of the hyper-sphere Sz of radius r
Yoxgtxi=r’ a=123,
with the hyper-plane x4 = r cos x, x € [0, ], is the sphere S, C R? = (x,)
Zaxi =r Sinzl
of radius r sin). In turns, the hyper-sphere S3 admits a parametric representation of
parameters (), u,V)
{ Xq = rsiny &, (u,v),

X4 = r cosy,

where x, = &,(u,v) is any parametric representation of the sphere of unitary radius
Y. E2 =1. Since

dxy =r(cosy & dy +sinyd&,),
dxs = —rsiny dy,

the square of the arc-element on S3 is
dS? =Y, dx’ +dx} = r? (cos’y dx? ¥, &2 +sin’y ¥, dE2) + 72 sin*y d
=12 (cos’ydy? +sin’y L, dE2) +r* sin’ y d x>,

ds* = r* (dy* +sin*y do?)

where

do® =Y d&;
a

is the square of the arc-element on the unitary sphere. We can use spherical coordi-
nates (u,v) = (0,¢) with 6 € [0, n] and ¢ € [0,27], so

dc* =d6’ +sin’0d¢>
and the metric tensor on S3 turns out to be
1 0 0
[gar) =7 | O sin’y 0
0 0 sin’ysin’6
Hence g = det[g;;] = r° sin*x sin*6 end N siny sin @, so that the volume-

element is
dV = /gdyd0d¢ = r’sin’y sin@ dy d8d¢.
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Since
/sinzx dx= % (x — sinx cosx) + constant,

the volume of the spherical cap of radius r and semi-amplitude Y is given by the

integral

Viny) = r3/owsin2x dy - /Oﬂsinede . /()Zﬂd(j) =7 % n(y—sinycosy)-2-2m.
As a consequence
V(r,w) =2nr (y—siny cos ) (7.9)
By setting y = 7 we obtain the volume of the whole sphere S3:
v =2n%p (7.10)
X4

Fig. 7.3. Spherical cap of S3.
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kinetic pressure, 49

Lagrangian coordinates, 18
Lambda cold dark matter model, vi
law of inertia, 34

Levi-Civita connection, 8

linear connection, 6

matter density, 56

Index

matter-radiation
equilibrium, 56
model, 56
metric tensor, 8
MR-model, 56
multiple zero, 63

Newtonian gravitazional constant, 47
normalizaton time, 12

parallel transport, 6
particle horizon, 109
peculiar velocity, ix, 35
perfect fluid, 49
photon, ix, 36
photon decouplig, 100
pointwise profile, xii
primary data, xi, Xii
primordial photons, 106
principle of
good ordering, vi
simplicity, vi
dimensional homogeneity, 16
isotropy, 4
profile
of the Universe, xii, 64

progression of a primordial photon, 106

proper
time, 45
velocity, 45
pseudo-cyclic profile, 68

radial representation, 81
radiation density, 20
radius of current visibility, 110
reception time, 102
recession speed, 15
recombination, 100
redshift, 116

parameter, 116
reference

distance, 14

metric, 12

space, 12

time, vii, 12
reionization

epoch, 100

time, 107
relative scalar velocity, 36
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138 Index

relativistic cosmic connection, 37

Ricci
curvature, 8
scalar, 8
tensor, 7
Riemann
coordinates, 9
form, 9
tensor, 7
Riemannian manifold, 8

scalar product, 8
scale factor, vii, 12
separation angle, 81
simplicity, vi
simultaneous events, 3
singular geodesics, 27
Slipher law, 123
space vectors, 4
spatial

homogeneity, 4

section, 3

uniformity, 4

special wandering particles, 22

spectral shift, 116
standard clock, 33
standard model, 60

state parameter, 51

stopping point, 63

sub-luminal particle, 45
super-luminal condition, 95
super-luminal recession speed, 95
symmetric connection, 7
synchronous distance, 14

total energy density, 51

total internal pressure, 52

totally covariant Riemann tensor, 8
trans-luminal border, 95

transport equations, 6

transversal, 3

visibility
radius, 107
relation, 107

visible, 106

wandering
particle, ix
particles, 22
Weierstrass
equation, xi, 62
function, xi, 62
Weyl principle, ix, 5
world-line, 1



